Calcium-independent cell volume regulation in human lymphocytes. Inhibition by charybdotoxin

نویسندگان

  • S Grinstein
  • J D Smith
چکیده

The properties of the K+ pathway underlying regulatory volume decrease (RVD) in human blood lymphocytes were investigated. Evidence is presented for the existence of three types of K+ conductance in these cells. Ionomycin, a Ca2+ ionophore, induced a K(+)-dependent hyperpolarization, indicating the presence of Ca2(+)-activated K+ channels, which were blocked by charybdotoxin (CTX). CTX also induced a depolarization of the resting membrane potential, even at subphysiological cytosolic [Ca2+]([Ca2+]i), which suggests the existence of a second CTX-sensitive, but Ca2(+)-independent conductance. A CTX-resistant K+ conductance was also detected. RVD in blood lymphocytes was partially (approximately 75%) blocked by CTX. However, volume regulation was not accompanied by detectable changes in [Ca2+]i, nor was it prevented by removal of extracellular Ca2+ and depletion or buffering of intracellular Ca2+. These observations suggest that K+ loss during RVD is mediated by Ca2(+)-independent, CTX-sensitive channels or that Ca2(+)-dependent channels can be activated by cell swelling at normal or subnormal [Ca2+]i. The former interpretation is supported by findings in rat thymic lymphocytes. These cells also displayed a CTX-sensitive Ca2(+)-dependent hyperpolarization. However, CTX did not significantly alter the resting potential, suggesting the absence of functional Ca2(+)-independent, toxin-sensitive channels. Volume regulation in thymic lymphocytes was less efficient than in human blood cells. In contrast to blood lymphocytes, RVD in thymocytes was not affected by CTX. These observations indicate that, though present in lymphocytes, Ca2(+)-activated K+ channels do not play an important role in volume regulation. Instead, RVD seems to be mediated by Ca2(+)-independent K+ channels. We propose that two types of channels, one CTX sensitive and the other CTX insensitive, mediate RVD in human blood lymphocytes, whereas only the latter type is involved in rat thymocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of IL-13 by Antisense Oligonucleotide Changes Immunoglobulin Isotype Profile in Cultured B-Lymphocytes

The link between IL-13 and bronchial hyper-responsiveness has brought this cytokine as a potential therapeutic target for asthma and allergic diseases. At the present study, we address the role of B cell derived IL-13 in the IgE and other immunoglobulin development. Antisense oligo for human IL-13 m-RNA was used to study IgE down regulation. Human B-lymphocytes were purified by positive selecti...

متن کامل

Tyrosine phosphorylation of band 3 protein in Ca2+/A23187-treated human erythrocytes.

Human erythrocytes were induced to release membrane vesicles by treatment with Ca2+ and ionophore A23187. In addition to the biochemical changes already known to accompany loading of human erythrocytes with Ca2+, the present study reveals that tyrosine phosphorylation of the anion exchanger band 3 protein also occurs. The relationship between tyrosine phosphorylation of band 3 and membrane vesi...

متن کامل

Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels.

T lymphocytes express a plethora of distinct ion channels that participate in the control of calcium homeostasis and signal transduction. Potassium channels play a critical role in the modulation of T cell calcium signaling, and the significance of the voltage-dependent K channel, Kv1.3, is well established. The recent cloning of the Ca(2+)-activated, intermediate-conductance K(+) channel (IK c...

متن کامل

Diverse K+ channels in primary human T lymphocytes

We used patch clamp techniques to identify and characterize a variety of K+ channels in primary human peripheral T lymphocytes. The most common channel observed in cell-attached configuration was voltage gated and inactivating. In ensemble averages, the kinetics of its activation and inactivation were similar to those of the whole-cell, voltage-gated K+ current described previously (Cahalan, M....

متن کامل

A Nongenomic Mechanism for Progesterone-mediated Immunosuppression: Inhibition of K+ Channels, Ca2+ Signaling, and Gene Expression in T Lymphocytes

The mechanism by which progesterone causes localized suppression of the immune response during pregnancy has remained elusive. Using human T lymphocytes and T cell lines, we show that progesterone, at concentrations found in the placenta, rapidly and reversibly blocks voltage-gated and calcium-activated K+ channels (KV and KCa, respectively), resulting in depolarization of the membrane potentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 95  شماره 

صفحات  -

تاریخ انتشار 1990