Sensitivity analysis on the performance of a ground source heat pump equipped with a double U-pipe borehole heat exchanger

نویسندگان

  • Alessandro Casasso
  • Rajandrea Sethi
چکیده

Ground Source Heat Pumps (GSHP) are economically and environmentally advantageous for the heating and cooling of buildings, provided that the long-term sustainability of the thermal exploitation of the soil is ensured. In particular, the performance of a closed-loop Borehole Heat Exchanger (BHE) strongly depends on the geometrical and physical properties of its components and on the thermo-hydrogeological properties of the surrounding soil. In this work, we present the results of a series of simulations of a double U-pipe Borehole Heat Exchanger, carried out with the finite-element flow and heat transport modelling software FEFLOW to assess the relative influence of these parameters on the operation of a GSHP. The analysis confirms that the length of the borehole is the main design parameter, but the thermal conductivity of the grout, the pipe spacing, the heat carrier fluid and its flow rate also have an important effect on the energy efficiency of the system. The thermal conductivity of the soil is another fundamental variable in the design of a GSHP, and hence it is better to rely on site-specific data, rather than adopting values from the literature. Although most design methods neglect it, the presence of a subsurface flow results in an enhancement of the performance of the system. Thermal dispersion also enhances the efficiency of the system but, since it has not yet been adequately studied, relying on it is not advised for the design of BHE fields. © 2014 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the Austrian Academy of Sciences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Thermal Response Test on a U-pipe Borehole Heat Exchanger

In a Distributed Thermal Response Test (DTRT) the ground thermal conductivity and borehole thermal resistance are determined at many instances along the borehole. Here, such a test is carried out at a 260 m deep water filled energy well, equipped with a U-pipe borehole heat exchanger, containing an aqueous solution of ethanol as working fluid. Distributed temperature measurements are carried ou...

متن کامل

Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system

BACKGROUND Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. METHODS Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions o...

متن کامل

Analysis of ground heat exchanger for a ground source heat pump: A study of an existing system to find optimal borehole length to enhance the coefficient of performance

Ground Source Heat Hump is one of the emerging technic to utilize the reservoir of geothermal energy in Europe. The crucial factor is to find the optimal length of the borehole to successfully design a heating system. The length of the borehole varies depending on the geographical area, the capacity of the heat pump and heat load of the desired building in consideration. Several methods have be...

متن کامل

Fully Fresh Air Air-conditioning System Equipped with Double Heat Pipe Based Heat Recovery Technology

The using of double heat pipe based heat exchanger (HPHX) in a conventional fully fresh air air-conditioning (AC) system was examined in the present study. The fabricated HPHXs were tested under the actual conditions and the measured data were used to study the performance of the existing AC system (System A) and AC system equipped with the double HPHX (System B) for a yearly operation through ...

متن کامل

A Double Pipe Heat Exchanger Design and Optimization for Cooling an Alkaline Fuel Cell System

In the presented research, heat transfer of a mobile electrolyte alkaline fuel cell (AFC) (which the electrolyte has cooling role of system) has been considered. Proper control volumes of system with specific qualification have been chosen. Consequently, heat and mass transfer in control volumes have been assessed. Considerations on them and contributed models lead to approve a double tube heat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014