Spheres and hyperbolic spaces

نویسنده

  • Paul Garrett
چکیده

The group-invariant geometry on real and complex n-balls is hyperbolic geometry, in the sense that there are infinitely many straight lines (geodesics) through a given point not on a given straight line, thus contravening the parallel postulate for Euclidean geometry. We will not directly consider geometric notions, since the transitive group action determines structure in a more useful form. Still, this explains the terminology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Regularity of Averages over Spheres for Kinetic Transport Equations in Hyperbolic Sobolev Spaces

We study the smoothing effect of averaging over spheres for solutions of kinetic transport equations in hyperbolic Sobolev spaces.

متن کامل

The Segal–Bargmann Transform for Odd-Dimensional Hyperbolic Spaces

We develop isometry and inversion formulas for the Segal–Bargmann transform on odd-dimensional hyperbolic spaces that are as parallel as possible to the dual case of odd-dimensional spheres.

متن کامل

Constant mean curvature hypersurfaces foliated by spheres ∗

We ask when a constant mean curvature n-submanifold foliated by spheres in one of the Euclidean, hyperbolic and Lorentz–Minkowski spaces (En+1, Hn+1 or Ln+1), is a hypersurface of revolution. In En+1 and Ln+1 we will assume that the spheres lie in parallel hyperplanes and in the case of hyperbolic space Hn+1, the spheres will be contained in parallel horospheres. Finally, Riemann examples in L3...

متن کامل

Hyperbolic Twistor Spaces

In contrast to the classical twistor spaces whose fibres are 2-spheres, we introduce twistor spaces over manifolds with almost quaternionic structures of the second kind in the sense of P. Libermann whose fibres are hyperbolic planes. We discuss two natural almost complex structures on such a twistor space and their holomorphic functions. Mathematics Subject Classification (2000). 53C28, 32L25,...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

Hamiltonian-minimal Lagrangian submanifolds in complex space forms

Using Legendrian immersions and, in particular, Legendre curves in odd dimensional spheres and anti De Sitter spaces, we provide a method of construction of new examples of Hamiltonian-minimal Lagrangian submanifolds in complex projective and hyperbolic spaces, including explicit one parameter families of embeddings of quotients of certain product manifolds. In addition, new examples of minimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011