Estimation of Markov Chain via Rank-constrained Likelihood

نویسندگان

  • Xudong Li
  • Mengdi Wang
  • Anru Zhang
چکیده

This paper studies the recovery and state compression of low-rank Markov chains from empirical trajectories. We propose a non-convex estimator based on rank-constrained likelihood maximization. Statistical upper bounds are provided for the Kullback-Leiber divergence and the `2 risk between the estimator and the true transition matrix. The estimator reveals a compressed state space of the Markov chain. We also develop a novel DC (difference of convex function) programming algorithm to tackle the rank-constrained non-smooth optimization problem. Convergence results are established. Experiments with taxi trip data show that the estimator is able to identify the zoning of Manhattan city.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending the rank likelihood for semiparametric copula estimation

Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is...

متن کامل

Marginal set likelihood for semiparametric copula estimation

Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is...

متن کامل

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

Estimation of the Entropy Rate of ErgodicMarkov Chains

In this paper an approximation for entropy rate of an ergodic Markov chain via sample path simulation is calculated. Although there is an explicit form of the entropy rate here, the exact computational method is laborious to apply. It is demonstrated that the estimated entropy rate of Markov chain via sample path not only converges to the correct entropy rate but also does it exponential...

متن کامل

Markov Chain Analogue Year Daily Rainfall Model and Pricing of Rainfall Derivatives

In this study we model the daily rainfall occurrence using Markov Chain Analogue Yearmodel (MCAYM) and the intensity or amount of daily rainfall using three different probability distributions; gamma, exponential and mixed exponential distributions. Combining the occurrence and intensity model we obtain Markov Chain Analogue Year gamma model (MCAYGM), Markov Chain Analogue Year exponentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018