Infinite Graded Free Resolutions
نویسندگان
چکیده
The idea of associating a free resolution to a finitely generated module was introduced in two famous papers by Hilbert in 1890 [Hi1] and 1893 [Hi2]. He proved Hilbert’s Syzygy Theorem 4.9, which says that the minimal free resolution of every finitely generated graded module over a polynomial ring is finite. Since then, there has been a lot of progress on the structure and properties of finite free resolutions. Much less is known about the properties of infinite free resolutions. Such resolutions occur abundantly since most minimal free resolutions over a graded non-linear quotient ring of a polynomial ring are infinite. The challenges in studying them come from:
منابع مشابه
Sheaf Cohomology and Free Resolutions over Exterior Algebras
In this paper we derive an explicit version of the BernsteinGel’fand-Gel’fand (BGG) correspondence between bounded complexes of coherent sheaves on projective space and minimal doubly infinite free resolutions over its “Koszul dual” exterior algebra. Among the facts about the BGG correspondence that we derive is that taking homology of a complex of sheaves corresponds to taking the “linear part...
متن کامل2 2 Ju l 2 00 3 LINEAR FREE RESOLUTIONS OVER NON - COMMUTATIVE ALGEBRAS
The main result of this paper is that over a noncommutative Koszul algebra, high truncations of finitely generated graded modules have linear free resolutions.
متن کاملFree Resolutions and Change of Rings
Projective resolutions of modules over a ring R are constructed starting from appropriate projective resolutions over a ring Q mapping to R. It is shown that such resolutions may be chosen to be minimal in codimension ≤ 2, but not in codimension 3. This is used to obtain minimal resolutions for essentially all modules over local (or graded) rings R with codimension ≤ 2. Explicit resolutions are...
متن کاملThe Alexander duality functors and local duality with monomial support
Alexander duality is made into a functor which extends the notion for monomial ideals to any finitely generated N-graded module. The functors associated with Alexander duality provide a duality on the level of free and injective resolutions, and numerous Bass and Betti number relations result as corollaries. A minimal injective resolution of a module M is equivalent to the injective resolution ...
متن کاملSplittable Ideals and the Resolutions of Monomial Ideals
We provide a new combinatorial approach to study the minimal free resolutions of edge ideals, that is, quadratic square-free monomial ideals. With this method we can recover most of the known results on resolutions of edge ideals with fuller generality, and at the same time, obtain new results. Past investigations on the resolutions of edge ideals usually reduced the problem to computing the di...
متن کامل