Assessment of vegetation stress using reflectance or fluorescence measurements.

نویسندگان

  • P K E Campbell
  • E M Middleton
  • J E McMurtrey
  • L A Corp
  • E W Chappelle
چکیده

Current methods for large-scale vegetation monitoring rely on multispectral remote sensing, which has serious limitation for the detection of vegetation stress. To contribute to the establishment of a generalized spectral approach for vegetation stress detection, this study compares the ability of high-spectral-resolution reflectance (R) and fluorescence (F) foliar measurements to detect vegetation changes associated with common environmental factors affecting plant growth and productivity. To obtain a spectral dataset from a broad range of species and stress conditions, plant material from three experiments was examined, including (i) corn, nitrogen (N) deficiency/excess; (ii) soybean, elevated carbon dioxide, and ozone levels; and (iii) red maple, augmented ultraviolet irradiation. Fluorescence and R spectra (400-800 nm) were measured on the same foliar samples in conjunction with photosynthetic pigments, carbon, and N content. For separation of a wide range of treatment levels, hyperspectral (5-10 nm) R indices were superior compared with F or broadband R indices, with the derivative parameters providing optimal results. For the detection of changes in vegetation physiology, hyperspectral indices can provide a significant improvement over broadband indices. The relationship of treatment levels to R was linear, whereas that to F was curvilinear. Using reflectance measurements, it was not possible to identify the unstressed vegetation condition, which was accomplished in all three experiments using F indices. Large-scale monitoring of vegetation condition and the detection of vegetation stress could be improved by using hyperspectral R and F information, a possible strategy for future remote sensing missions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rethinking Chlorophyll Responses to Stress: Fluorescence and Reflectance Remote Sensing in a Coastal Environment

Chlorophyll fluorescence and hyperspectral reflectance were used to evaluate physiological responses to two common stressors in coastal environments. Chlorophyll content is one indicator of drought and salinity vegetation stress because of its direct role in the photosynthetic process and electron transport. Recent advances in fluorescence spectroscopy have led to the development of numerous re...

متن کامل

Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.

Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance data, which provide estimates of vigor based primarily on chlorophyll content. Chlorophyll fluorescence (ChlF) measurements offer a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has...

متن کامل

Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.

Physical principles applied to remote sensing data are key to successfully quantifying vegetation physiological condition from the study of the light interaction with the canopy under observation. We used the fluorescence-reflectance-transmittance (FRT) and PROSPECT leaf models to simulate reflectance as a function of leaf biochemical and fluorescence variables. A series of laboratory measureme...

متن کامل

A Comparison of Different Techniques for Passive Measurement of Vegetation Photosynthetic Activity: Solar-Induced Fluorescence, Red-Edge Reflectance Structure and Photochemical Reflectance Indices

Measurement of vegetation photosynthetic activity from space has been an objective for the development of new techniques. Among the different existing techniques, passive fluorescence measurements, specific reflectance indices such as the PRI (Photochemical Reflectance Index), and derivative of high spectral resolution reflectance in the red-edge (680-750 nm) are the three methods than can be u...

متن کامل

Diurnal Cycle Relationships between Passive Fluorescence, PRI and NPQ of Vegetation in a Controlled Stress Experiment

In order to estimate vegetation photosynthesis from remote sensing observations; some critical parameters need to be quantified. From all absorbed light; the plant needs to release any excess that is not used for photosynthesis; by non-photochemical quenching; by fluorescence emission and unregulated thermal dissipation. Non-photochemical quenching (NPQ) processes are controlled photoprotective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2007