Global asymptotic stability and global exponential stability of continuous-time recurrent neural networks

نویسندگان

  • Sanqing Hu
  • Jun Wang
چکیده

This note presents new results on global asymptotic stability (GAS) and global exponential stability (GES) of a general class of continuous-time recurrent neural networks with Lipschitz continuous and monotone nondecreasing activation functions. We first give three sufficient conditions for the GAS of neural networks. These testable sufficient conditions differ from and improve upon existing ones. We then extend an existing GAS result to GES one and also extend the existing GES results to more general cases with less restrictive connection weight matrices and/or partially Lipschitz activation functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays

In this paper‎, ‎a bidirectional ring network with three cells and different time delays is presented‎. ‎To propose this model which is a good extension of three-unit neural networks‎, ‎coupled cell network theory and neural network theory are applied‎. ‎In this model‎, ‎every cell has self-connections without delay but different time delays are assumed in other connections‎. ‎A suitable Lyapun...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Global Stability of a Class of Continuous-Time Recurrent Neural Networks

This paper investigates global asymptotic stability (GAS) and global exponential stability (GES) of a class of continuous-time recurrent neural networks. First, we introduce a necessary and sufficient condition for existence and uniqueness of equilibrium of the neural networks with Lipschitz continuous activation functions. Next, we present two sufficient conditions to ascertain the GAS of the ...

متن کامل

Global Stability of a Class of Discrete-Time Recurrent Neural Networks

This paper presents several analytical results on global asymptotic stability (GAS) and global exponential stability (GES) for the equilibrium states of a general class of discrete-time recurrent neural networks (DTRNNS) with asymmetric connection weight matrices and globally Lipschitz continuous and monotone nondecreasing activation functions. A necessary and sufficient condition is formulated...

متن کامل

Global Exponential Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays

This brief presents new theoretical results on the global exponential stability of neural networks with time-varying delays and Lipschitz continuous activation functions. These results include several sufficient conditions for the global exponential stability of general neural networks with time-varying delays and without monotone, bounded, or continuously differentiable activation function. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2002