Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data

نویسندگان

  • Mingquan Wu
  • Wenjiang Huang
  • Zheng Niu
  • Changyao Wang
چکیده

Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of dense time series synthetic Landsat data through data blending with MODIS using the spatial and temporal adaptive reflectance fusion model (STARFM)

Landsat imagery with a 30 m spatial resolution is well suited for characterizing landscape-level forest structure and dynamics. While Landsat images have advantageous spatial and spectral characteristics for describing vegetation properties, the Landsat sensor's revisit rate, or the temporal resolution of the data, is 16 days. When considering that cloud cover may impact any given acquisition, ...

متن کامل

Learning-Based Sub-Pixel Change Detection Using Coarse Resolution Satellite Imagery

Moderate Resolution Imaging Spectroradiometer (MODIS) data are effective and efficient for monitoring urban dynamics such as urban cover change and thermal anomalies, but the spatial resolution provided by MODIS data is 500 m (for most of its shorter spectral bands), which results in difficulty in detecting subtle spatial variations within a coarse pixel—especially for a fast-growing city. Give...

متن کامل

Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves

Green-leaf phenology describes the development of vegetation throughout a growing season and greatly affects the interaction between climate and the biosphere. Remote sensing is a valuable tool to characterize phenology over large areas but doing at fineto medium resolution (e.g., with Landsat data) is difficult because of low numbers of cloud-free images in a single year. One way to overcome d...

متن کامل

Maintenance of ecosystem nitrogen limitation by ephemeral forest disturbance: An assessment using MODIS, Hyperion, and Landsat ETM+

[1] Ephemeral disturbances, such as non-lethal insect defoliations and crown damage from meteorological events, can significantly affect the delivery of ecosystem services by helping maintain nitrogen (N) limitation in temperate forest ecosystems. However, the impacts of these disturbances are difficult to observe across the broad-scales at which they affect ecosystem function. Using remotely s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015