Best multilinear rank approximation of tensors with quasi-Newton methods on Grassmannians

نویسندگان

  • Berkant Savas
  • Lek-Heng Lim
چکیده

In this report we present computational methods for the best multilinear rank approximation problem. We consider algorithms build on quasi-Newton methods operating on product of Grassmann manifolds. Specifically we test and compare methods based on BFGS and L-BFGS updates in local and global coordinates with the Newton-Grassmann and alternating least squares methods. The performance of the quasiNewton methods is in many cases much better than the other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors

In this paper we proposed quasi-Newton and limited memory quasi-Newton methods for objective functions defined on Grassmann manifolds or a product of Grassmann manifolds. Specifically we defined bfgs and l-bfgs updates in local and global coordinates on Grassmann manifolds or a product of these. We proved that, when local coordinates are used, our bfgs updates on Grassmann manifolds share the s...

متن کامل

Krylov-type methods for tensor computations I

Several Krylov-type procedures are introduced that generalize matrix Krylov methods for tensor computations. They are denoted minimal Krylov recursion, maximal Krylov recursion, and contracted tensor product Krylov recursion. It is proved that, for a given tensor A with multilinear rank-(p, q, r), the minimal Krylov recursion extracts the correct subspaces associated to the tensor in p+ q+r num...

متن کامل

Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition

This paper presents a Cramér-Rao lower bound (CRLB) on the variance of unbiased estimates of factor matrices in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP) decompositions of a tensor from noisy observations, (i.e., the tensor plus a random Gaussian i.i.d. tensor). A novel expression is derived for a bound on the mean square angular error of factors along a selected dimension of a tensor o...

متن کامل

Jacobi Algorithm for the Best Low Multilinear Rank Approximation of Symmetric Tensors

The problem discussed in this paper is the symmetric best low multilinear rank approximation of third-order symmetric tensors. We propose an algorithm based on Jacobi rotations, for which symmetry is preserved at each iteration. Two numerical examples are provided indicating the need of such algorithms. An important part of the paper consists of proving that our algorithm converges to stationar...

متن کامل

On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors

In this paper we discuss a multilinear generalization of the best rank-R approximation problem for matrices, namely, the approximation of a given higher-order tensor, in an optimal leastsquares sense, by a tensor that has prespecified column rank value, row rank value, etc. For matrices, the solution is conceptually obtained by truncation of the singular value decomposition (SVD); however, this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008