Combinatorial efficacy achieved through two-point blockade within a signaling pathway-a chemical genetic approach.

نویسندگان

  • Qi-Wen Fan
  • Kimberly Musa Specht
  • Chao Zhang
  • Dmitriy D Goldenberg
  • Kevan M Shokat
  • William A Weiss
چکیده

Whether the apparent efficacy of a specific kinase inhibitor is attributable solely to inhibition of its primary target, or to combined inhibition of additional unidentified kinases, is a critical issue in cancer therapy. We used a chemical genetic approach to generate a selective inhibitor of v-erbB [a transforming allele of epidermal growth factor receptor (EGFR)] and interrogated inhibition in known downstream signaling pathways. On the basis of this analysis, we hypothesized that dual inhibition of v-erbB and phosphatidylinositol 3' (PI3) kinases could show improved potency. We, therefore, used two different cell lines to examine the effects of v-erbB or EGFR inhibitors, in combination with PI3 kinase inhibitors, in mouse models for EGFR-driven cancers. When treated with NaPP1, v-erbB-as1-transformed fibroblasts showed cell-cycle arrest and decreased activity of Akt kinase. Inhibitors of v-erbB-as1 and of PI3 kinase showed enhanced efficacy in treating established 3T3:v-erbB-as1 tumor allografts. We extended these results to the human glioma cell line U87:MG transduced with DeltaEGFR, a tumor-derived activated allele, treating tumor-bearing mice with vehicle, the EGFR inhibitor ZD1839, LY294002, or ZD1839 plus LY294002. In human glioma xenografts, inhibition of EGFR cooperated similarly with inhibition of PI3 kinase. Our experiments provide a preclinical mechanistic basis for combining biologically based therapies directed against two targets within a complex signaling cascade.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...

متن کامل

WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death

The WNT pathway mediates intercellular signaling that regulates cell fate in both normal development and cancer. It is widely appreciated that the WNT pathway is frequently dysregulated in human cancers through a variety of genetic and epigenetic mechanisms. Targets in the WNT pathway are being extensively pursued for the development of new anticancer therapies, and we have advanced two WNT ant...

متن کامل

A Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes

It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences...

متن کامل

Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...

متن کامل

LAT-derived microRNAs in HSV-1 target SMAD3 and SMAD4 in TGF-β/Smad signaling pathway

Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 63 24  شماره 

صفحات  -

تاریخ انتشار 2003