Differential binding of the related transcription factors Pho4 and Cbf1 can tune the sensitivity of promoters to different levels of an induction signal
نویسندگان
چکیده
Transcription factors that belong to the same family typically have similar, but not identical, binding specificities. As such, they can be expected to compete differentially for binding to different variants of their binding sites. Pho4 is a yeast factor whose nuclear concentration is up-regulated in low phosphate, while the related factor, Cbf1, is constitutively expressed. We constructed 16 GFP-reporter genes containing all palindromic variants of the motif NNCACGTGNN, and determined their activities at a range of phosphate concentrations. Pho4 affinity did not explain expression data well except under fully induced conditions. However, reporter activity was quantitatively well explained under all conditions by a model in which Cbf1 itself has modest activating activity, and Pho4 and Cbf1 compete with one another. Chromatin immunoprecipitation and computational analyses of natural Pho4 target genes, along with the activities of the reporter constructs, indicates that genes differ in their sensitivity to intermediate induction signals in part because of differences in their affinity for Cbf1. The induction sensitivity of both natural Pho4 target genes and reporter genes was well explained only by a model that assumes a role for Cbf1 in remodeling chromatin. Our analyses highlight the importance of taking into account the activities of related transcription factors in explaining system-wide gene expression data.
منابع مشابه
Partially Phosphorylated Pho4 Activates Transcription of a Subset of Phosphate-Responsive Genes
A cell's ability to generate different responses to different levels of stimulus is an important component of an adaptive environmental response. Transcriptional responses are frequently controlled by transcription factors regulated by phosphorylation. We demonstrate that differential phosphorylation of the budding yeast transcription factor Pho4 contributes to differential gene expression. Whe...
متن کاملIntegrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4.
DNA sequences with high affinity for transcription factors occur more frequently in the genome than instances of genes bound or regulated by these factors. It is not clear what factors determine the genome-wide pattern of binding or regulation for a given transcription factor. We used an integrated approach to study how trans influences shape the binding and regulatory landscape of Pho4, a budd...
متن کاملDissection of Combinatorial Control by the Met4 Transcriptional Complex
Met4 is the transcriptional activator of the sulfur metabolic network in Saccharomyces cerevisiae. Lacking DNA-binding ability, Met4 must interact with proteins called Met4 cofactors to target promoters for transcription. Two types of DNA-binding cofactors (Cbf1 and Met31/Met32) recruit Met4 to promoters and one cofactor (Met28) stabilizes the DNA-bound Met4 complexes. To dissect this combinato...
متن کاملP-106: Comparative Expression of The Stemness Gene Oct-4, Nanog, Sox-2 and Rex-1 in Normal Endometrium and in Endometriosis
Background Endometriosis is a gynecological disease defined as the presence of endometrial tissue outside the uterine cavity, which caused by various factors. Recent evidences support the presence of endometrial stem cells and their possible involvement in endometriosis. Related studies mainly focus on stemness-related genes, and pluripotency markers may play a role in the etiology of endometri...
متن کاملHomocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells
Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...
متن کامل