Infinite Symmetry in the Quantum Hall Effect

نویسندگان

  • Carlo A. TRUGENBERGER
  • Guillermo R. ZEMBA
چکیده

Free planar electrons in a uniform magnetic field are shown to possess the symmetry of area-preserving diffeomorphisms (W -infinity algebra). Intuitively, this is a consequence of gauge invariance, which forces dynamics to depend only on the flux. The infinity of generators of this symmetry act within each Landau level, which is infinite-dimensional in the thermodynamical limit. The incompressible ground states corresponding to completely filled Landau levels (integer quantum Hall effect) are shown to be infinitely symmetric, since they are annihilated by an infinite subset of generators. This geometrical characterization of incompressibility also holds for fractional fillings of the lowest level (simplest fractional Hall effect) in the presence of Haldane’s effective two-body interactions. Although these modify the symmetry algebra, the corresponding incompressible ground states proposed by Laughlin are again symmetric with respect to the modified infinite algebra. CERN-TH 6516/92 May 1992 * On leave of absence from I.N.F.N., Firenze, Italy. ** Bitnets CAPPELLI, CAT, ZEMBA at CERNVM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Symmetry and Fractional Charges in N = 2 Supersymmetric Yang-Mills and the Quantum Hall Effect

The parallel rôles of modular symmetry in N = 2 supersymmetric SU(2) Yang-Mills and in the quantum Hall effect are reviewed. In both cases modular symmetry implies a fractal structure for the vacuum with an infinite hierarchy of related phases connected by quantum phase transitions. Infra-red fixed points at strong coupling correspond to θ-vacua, respectively Hall conductivities σH , with θ, re...

متن کامل

بررسی اثر صحیح کوانتومی هال در سیستمهای دارای ناخالصی به روش تبدیل پیمانه‌ای در حضور نقطه‌های کوانتومی

In this paper we study the integer quantum Hall effect (IQHE) on the systems with different types of impurities in delta and gaussian forms. The Landau energy levels in the presence of impurity split in two different levels,the extended and localized levels, emerging then the Hall step. Finally, we add a specified form of a quantum dot potential to a system with impurity, and observed that incr...

متن کامل

شبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست

 In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...

متن کامل

Bosonic integer quantum Hall effect in an interacting lattice model.

We study a bosonic model with correlated hopping on a honeycomb lattice, and show that its ground state is a bosonic integer quantum Hall (BIQH) phase, a prominent example of a symmetry-protected topological (SPT) phase. By using the infinite density matrix renormalization group method, we establish the existence of the BIQH phase by providing clear numerical evidence: (i) a quantized Hall cond...

متن کامل

One-Dimensional Flows in the Quantum Hall System

* Research supported in part by N.S.E.R.C. of Canada, F.C.A.R. du Québec and the Norwegian Research Council. We construct the c function whose gradient determines the RG flow of the conductivities (σxy and σxx) for a quantum Hall system, subject to two assumptions. (1) We take the flow to be invariant with respect to the infinite discrete symmetry group, ΓH , recently proposed by several worker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992