Structure change of δ’ precipitates during heating at a constant rate in Al-Li binary alloys
نویسندگان
چکیده
منابع مشابه
Hydrogen Isotope Trapping in Al-Cu Binary Alloys
The trapping mechanisms for hydrogen isotopes in Al-X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstit...
متن کاملMicrostructure and Precipitation in Al - Li - Cu - Mg - ( Mn , Zr ) alloys
Hot rolled Al-6Li-1Cu-1Mg-0.2Mn (at.%) (Al-1.6Li-2.2Cu-0.9Mg-0.4Mn, wt.%) and Al-6Li-1Cu-1Mg-0.03Zr (at.%) (Al-1.6Li-2.3Cu-1Mg-0.1Zr, wt.%) alloys developed for age forming were studied by tensile testing, electron backscatter diffraction (EBSD), three-dimensional atom probe (3DAP), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). For both alloys, DSC analysis...
متن کاملPrecipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 C
The transformation of Al3Zr (L12) and Al3(Zr1 xTix) (L12) precipitates to their respective equilibrium D023 structures is investigated in conventionally solidified Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys aged isothermally at 500 C or aged isochronally in the range 300– 600 C. Titanium additions delay neither coarsening of the metastable L12 precipitates nor their transformation to the D023 st...
متن کاملEffects of Zr on the Microstructure and Mechanical Properties of Al-Sc- Yb Alloys
Cast, coarse-grained Al-Sc alloys are interesting candidates for high temperature, creepresistant applications due to the formation of a high number density of nanometer sized Al3Sc precipitates [1]. Upon addition of Yb to Al-Sc alloys, Yb replaces the Sc forming Al3(Sc1-xYbx) precipitates (L12 structure) [2]. The resulting alloys have higher creep resistance due to the larger lattice parameter...
متن کاملDevelopment of a Nanoscale Precipitation-Strengthened Creep-Resistant Aluminum Alloy Containing Trialuminide Precipitates
Development of a Nanoscale Precipitation-Strengthened Creep-Resistant Aluminum Alloy Containing Trialuminide Precipitates Keith Edward Knipling This research is toward developing a castable andheat-treatable precipitation-strengthened aluminum alloy exhibiting coarseningand creep resistance at temperatures exceeding 400°C. Criteria for selecting alloying elements capable of producing such an al...
متن کامل