Global rigidity of 3-dimensional cone-manifolds
نویسنده
چکیده
We prove global rigidity for compact hyperbolic and spherical cone-3-manifolds with cone-angles ≤ π (which are not Seifert fibered in the spherical case), furthermore for a class of hyperbolic cone-3-manifolds of finite volume with cone-angles ≤ π, possibly with boundary consisting of totally geodesic hyperbolic turnovers. To that end we first generalize the local rigidity result contained in [Wei] to the setting of hyperbolic cone-3-manifolds of finite volume as above. We then use the techniques developed in [BLP] to deform the cone-manifold structure to a complete non-singular or a geometric orbifold structure, where global rigidity holds due to Mostow-Prasad rigidity, cf. [Mos], [Pra], in the hyperbolic case, resp. [deR], cf. also [Rot], in the spherical case. This strategy has already been implemented successfully by [Koj] in the compact hyperbolic case if the singular locus is a link using HodgsonKerckhoff local rigidity, cf. [HK].
منابع مشابه
Rigidity of geometrically finite hyperbolic cone-manifolds
In a recent paper Hodgson and Kerckhoff [HK] prove a local rigidity theorem for finite volume, 3 dimensional hyperbolic cone-manifolds. In this paper we extend this result to geometrically finite cone-manifolds. Our methods also give a new proof of a local version of the classical rigidity theorem for geometrically finite hyperbolic 3-manifolds.
متن کاملDeformations of Hyperbolic 3-cone-manifolds
We show that any compact orientable hyperbolic 3-cone-manifold with cone angles at most π can be continuously deformed to a complete hyperbolic manifold homeomorphic to the complement of the singularity. This together with the local rigidity by Hodgson and Kerckhoff implies the global rigidity for compact orientable hyperbolic 3-cone-manifolds under the same angle assumption.
متن کاملDeformations of Hyperbolic Cone Manifolds
We show that any compact orientable hyperbolic cone manifold with cone angles at most can be continuously deformed to a complete hyperbolic manifold homeomorphic to the complement of the singularity This together with the local rigidity by Hodgson and Kerckho implies the global rigidity for compact orientable hyperbolic cone manifolds under the same angle assumption
متن کاملLocal rigidity of 3-dimensional cone-manifolds
We investigate the local deformation space of 3-dimensional conemanifold structures of constant curvature κ ∈ {−1, 0, 1} and coneangles≤ π. Under this assumption on the cone-angles the singular locus will be a trivalent graph. In the hyperbolic and the spherical case our main result is a vanishing theorem for the first Lcohomology group of the smooth part of the cone-manifold with coefficients ...
متن کاملQuasi-fuchsian Manifolds with Particles
We consider 3-dimensional hyperbolic cone-manifolds which are “convex cocompact” in a natural sense, with cone singularities along infinite lines. Such singularities are sometimes used by physicists as models for massive spinless point particles. We prove an infinitesimal rigidity statement when the angles around the singular lines are less than π: any infinitesimal deformation changes either t...
متن کامل