Overexpression of CD133 promotes drug resistance in C6 glioma cells.

نویسندگان

  • James M Angelastro
  • Michael W Lamé
چکیده

Glioblastoma multiforme is an extremely aggressive and clinically unresponsive form of cancer. Transformed neoplastic neural stem cells, resistant to chemotherapy and radiation therapy, are thought to be responsible for the initial tumor formation and the recurrence of disease following surgical resection. These stem cells express multidrug resistance markers along with CD133. We show that ectopic overexpression of CD133 in rat C6 glioma cells leads to significant reluctance to undergo apoptosis from camptothecin and doxorubicin. Although p53 was upregulated in CD133-overexpressing glioma cells treated with DNA-damaging agents, apoptosis seems to be p53 independent. At least one ABC transporter, rat P-glycoprotein/ABCB1, was upregulated by 62% in CD133(+) cells with a corresponding increase in activity. Thus, the combination of higher P-glycoprotein mRNA transcription and elevated transporter activity seems to contribute to the protection from cytotoxic reagents. In conclusion, previous investigators have reported that resilient cancer stem cells coexpress CD133 and ABC transporters with increased reluctance toward apoptosis. Our data suggest that CD133 may contribute to the observed resistance to apoptosis of CD133(+) cancer stem cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rexpression of CD 133 Promotes Drug Resistance in R Glioma Cells

ownload blastoma multiforme is an extremely aggressive and clinically unresponsive form of cancer. Transformed stic neural stem cells, resistant to chemotherapy and radiation therapy, are thought to be responsible for itial tumor formation and the recurrence of disease following surgical resection. These stem cells express rug resistance markers along with CD133. We show that ectopic overexpres...

متن کامل

Cell Ove C 6

ownload blastoma multiforme is an extremely aggressive and clinically unresponsive form of cancer. Transformed stic neural stem cells, resistant to chemotherapy and radiation therapy, are thought to be responsible for itial tumor formation and the recurrence of disease following surgical resection. These stem cells express rug resistance markers along with CD133. We show that ectopic overexpres...

متن کامل

The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells

Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...

متن کامل

TLR4 interaction with LPS in glioma CD133+ cancer stem cells induces cell proliferation, resistance to chemotherapy and evasion from cytotoxic T lymphocyte-induced cytolysis

Despite advances in treatment modalities, 5-year survival among glioma patients remains poor. Glioma cancer stem cells (CSCs) exhibit high tumorigenic activity and are associated with resistance to treatment and tumor recurrence. Because overexpression of toll-like receptor 4 (TLR4) correlated with cancer development, we investigated LPS-induced TLR4 signaling in glioma CD133-positive (CD133+) ...

متن کامل

Magnetofection Based on Superparamagnetic Iron Oxide Nanoparticles Weakens Glioma Stem Cell Proliferation and Invasion by Mediating High Expression of MicroRNA-374a

Glioma stem cells belong to a special subpopulation of glioma cells that are characterized by strong proliferation, invasion and drug resistance capabilities. Magnetic nanoparticles are nanoscale biological materials with magnetic properties. In this study, CD133(+) primary glioma stem cells were isolated from patients and cultured. Then, magnetic nanoparticles were used to mediate the transfec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 8 8  شماره 

صفحات  -

تاریخ انتشار 2010