Evidence for Electrical Coupling in the SubCoeruleus (SubC) Nucleus.

نویسندگان

  • David S Heister
  • Abdallah Hayar
  • Amanda Charlesworth
  • Charlotte Yates
  • Yi-Hong Zhou
  • Edgar Garcia-Rill
چکیده

SubCoeruleus (SubC) neurons, which are thought to modulate rapid-eye-movement (REM) sleep, were recorded in brain stem slices from 7- to 20-day rats and found to manifest spikelets, indicative of electrical coupling. Spikelets occurred spontaneously or could be induced by superfusion of the cholinergic agonist carbachol. Whole cell recordings revealed that carbachol induced membrane oscillations and spikelets in the theta frequency range in SubC neurons in the presence of fast synaptic blockers. Electrical coupling in neurons is mediated by the gap junction protein connexin 36 (Cx 36). We found that Cx 36 gene expression and protein in the mesopontine tegmentum decreased during development. Cx 36 protein levels specifically in the SubC decreased in concert with the developmental decrease in REM sleep. The presence of electrical coupling in the SubC introduces a novel potential mechanism of action for the regulation of sleep-wake states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrotonic coupling in the nucleus SubCoeruleus. Focus on "evidence for electrical coupling in the SubCoeruleus (SubC) nucleus".

New findings by Heister et al. presented in this issue of the Journal of Neurophysiology (p. 3142–3147) suggest that neurons in the rat pontine subcoeruleus (SubC) nucleus are electrotonically coupled. Electrical neurotransmission in the CNS is frequently generated by members of the connexin (Cx) family of proteins. Heister et al. report that SubC neurons robustly express mRNA and protein for C...

متن کامل

REM Sleep at its Core – Circuits, Neurotransmitters, and Pathophysiology

Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining f...

متن کامل

Two Subpopulations of Noradrenergic Neurons in the Locus Coeruleus Complex Distinguished by Expression of the Dorsal Neural Tube Marker Pax7

Central noradrenergic neurons, collectively defined by synthesis of the neurotransmitter norepinephrine, are a diverse collection of cells in the hindbrain, differing in their anatomy, physiological and behavioral functions, and susceptibility to disease and environmental insult. To investigate the developmental basis of this heterogeneity, we have used an intersectional genetic fate mapping st...

متن کامل

Effect of Electrical Stimulation and Lesion of Nucleus Accumbens on EEG of Intact and Addicted Rats

Introduction: The nucleus accumbens is involved in various functions ranging from motivation and reward to feeding and drug addiction. Some researchers have also suggested that this region has some roles in consciousness. In the present study, the effect of electrical stimulation and lesion of nucleus accumbens on Electroencephalogram waves (EEG) of addict and non-addict rats was investigated. ...

متن کامل

Coupling Effects and Performance of Loran Transmitter Antennas

It is known that if a conductor resides in the neighboring of an antenna with a small distance relative to the wavelength, it induces a reverse current on the conductor. This paper involves the unavoidable coupling effects on some common types of LF antennas, due to the large wavelength in this frequency band. In particular, after some discussions about top-loaded antennas, the coupling effect ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 4  شماره 

صفحات  -

تاریخ انتشار 2007