Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters
نویسندگان
چکیده
Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.
منابع مشابه
Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters
Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to ass...
متن کاملComparative analysis of nitrifying bacteria associated with freshwater and marine aquaria.
Three nucleic acid probes, two for autotrophic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria and one for alpha subdivision nitrite-oxidizing bacteria, were developed and used to study nitrifying bacterial phylotypes associated with various freshwater and seawater aquarium biofilters. Nitrosomonas europaea and related species were detected in all nitrifying seawa...
متن کاملAn introduction to freshwater aquarium plants
Freshwater aquarium plants are one of the most popular components in freshwater aquariums. The aquarium plant trade is a lucrative trade in its producer countries. In fact, the aquarium is a closed and controlled environment that coordination between all its components is necessary to maintain the balance and stability of this small ecosystem. They beautify the interior of the aquarium, moreove...
متن کاملPhysiological and Metagenomic Characterizations of the Synergistic Relationships between Ammonia- and Nitrite-Oxidizing Bacteria in Freshwater Nitrification
Nitrification plays a crucial role in global nitrogen cycling and treatment processes. However, the relationships between the nitrifier guilds of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) are still poorly understood, especially in freshwater habitats. This study examined the physiological interactions between the AOB and NOB present in a freshwater aquarium biofilter...
متن کاملMarine archaea take a short cut in the nitrogen cycle.
S eeing “nitrification” and “Archaea” in the title of the paper in PNAS by Alonso-Sáez et al. (1) will not surprise anyone following the story about the role of these microbes in an important pathway of the nitrogen cycle. What will puzzle, if not surprise, everyone is the other key word, “urea.” That nitrogenous compound never comes up in discussions of nitrification and Archaea, and even othe...
متن کامل