Radiation produces differential changes in cytokine profiles in radiation lung fibrosis sensitive and resistant mice
نویسندگان
چکیده
BACKGROUND Recent research has supported that a variety of cytokines play important roles during radiation-induced lung toxicity. The present study is designed to investigate the differences in early cytokine induction after radiation in sensitive (C57BL/6) and resistant mice (C3H). RESULTS Twenty-two cytokines in the lung tissue homogenates, bronchial lavage (BAL) fluids, and serum from 3, 6, 12, 24 hrs to 1 week after 12 Gy whole lung irradiation were profiled using a microsphere-based multiplexed cytokine assay. The majority of cytokines had similar baseline levels in C57BL/6 and C3H mice, but differed significantly after radiation. Many, including granulocyte colony-stimulating factor (G-CSF), interleukin-6 (IL-6), and keratinocyte-derived chemokine (KC) were elevated significantly in specimens from both strains. They usually peaked at about 3-6 hrs in C57BL/6 and 6-12 hrs in C3H. At 6 hrs in lung tissue, G-CSF, IL-6, and KC increased 6, 8, and 11 fold in C57BL/6 mice, 4, 3, and 3 fold in the C3H mice, respectively. IL-6 was 10-fold higher at 6 hrs in the C57BL/6 BAL fluid than the C3H BAL fluid. MCP-1, IP-10, and IL-1alpha also showed some differences between strains in the lung tissue and/or serum. For the same cytokine and within the same strain of mice, there were significant linear correlations between lung tissue and BAL fluid levels (R2 ranged 0.46-0.99) and between serum and tissue (R2 ranged 0.56-0.98). CONCLUSION Radiation induced earlier and greater temporal changes in multiple cytokines in the pulmonary fibrosis sensitive mice. Positive correlation between serum and tissue levels suggests that blood may be used as a surrogate marker for tissue.
منابع مشابه
Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice
BACKGROUND The lung response to radiation exposure can involve an immediate or early reaction to the radiation challenge, including cell death and an initial immune reaction, and can be followed by a tissue injury response, of pneumonitis or fibrosis, to this acute reaction. Herein, we aimed to determine whether markers of the initial immune response, measured within days of radiation exposure,...
متن کاملCurcumin Mitigates Radiation-induced Lung Pneumonitis and Fibrosis in Rats
Radiation-induced lung injury is one of the most prominent factors that interfere with chest cancer radiotherapy, and poses a great threat to patients exposed to total body irradiation. Upregulation of pro-oxidant enzymes is one of the main mechanisms through which the late effects of ionizing radiation on lung injury can be exerted. Interleukin (IL)-4 and IL-13 are two important cytokines that...
متن کاملStandardized Herbal Formula PM014 Inhibits Radiation-Induced Pulmonary Inflammation in Mice
Radiation therapy is widely used for thoracic cancers. However, it occasionally causes radiation-induced lung injuries, including pneumonitis and fibrosis. Chung-Sang-Bo-Ha-Tang (CSBHT) has been traditionally used to treat chronic pulmonary disease in Korea. PM014, a modified herbal formula derived from CSBHT, contains medicinal herbs of seven species. In our previous studies, PM014 exhibited a...
متن کاملIL-13 is a therapeutic target in radiation lung injury
Pulmonary fibrosis is a potentially lethal late adverse event of thoracic irradiation. Prior research indicates that unrestrained TGF-β1 and/or type 2 cytokine-driven immune responses promote fibrosis following radiation injury, but the full spectrum of factors governing this pathology remains unclear. Interleukin 13 (IL-13) is a key factor in fibrotic disease associated with helminth infection...
متن کاملGene expression profiles among murine strains segregate with distinct differences in the progression of radiation-induced lung disease
Molecular mechanisms underlying development of acute pneumonitis and/or late fibrosis following thoracic irradiation remain poorly understood. Here, we hypothesize that heterogeneity in disease progression and phenotypic expression of radiation-induced lung disease (RILD) across murine strains presents an opportunity to better elucidate mechanisms driving tissue response toward pneumonitis and/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Hematology & Oncology
دوره 2 شماره
صفحات -
تاریخ انتشار 2009