Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways.
نویسندگان
چکیده
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) peptide deposition in brain parenchyma as plaques and in cerebral blood vessels as cerebral amyloid angiopathy (CAA). CAA deposition leads to several clinical complications, including intracerebral hemorrhage. The underlying molecular mechanisms that regulate plaque and CAA deposition in the vast majority of sporadic AD patients remain unclear. The clusterin (CLU) gene is genetically associated with AD and CLU has been shown to alter aggregation, toxicity, and blood-brain barrier transport of Aβ, suggesting it might play a key role in regulating the balance between Aβ deposition and clearance in both brain and blood vessels. Here, we investigated the effect of CLU on Aβ pathology using the amyloid precursor protein/presenilin 1 (APP/PS1) mouse model of AD amyloidosis on a Clu+/+ or Clu-/- background. We found a marked decrease in plaque deposition in the brain parenchyma but an equally striking increase in CAA within the cerebrovasculature of APP/PS1;Clu-/- mice. Surprisingly, despite the several-fold increase in CAA levels, APP/PS1;Clu-/- mice had significantly less hemorrhage and inflammation. Mice lacking CLU had impaired clearance of Aβ in vivo and exogenously added CLU significantly prevented Aβ binding to isolated vessels ex vivo. These findings suggest that in the absence of CLU, Aβ clearance shifts to perivascular drainage pathways, resulting in fewer parenchymal plaques but more CAA because of loss of CLU chaperone activity, complicating the potential therapeutic targeting of CLU for AD.
منابع مشابه
Clusterin/Apolipoprotein J immunoreactivity is associated with white matter damage in cerebral small vessel diseases
AIM Brain clusterin is known to be associated with the amyloid-β deposits in Alzheimer's disease (AD). We assessed the distribution of clusterin immunoreactivity in cerebrovascular disorders, particularly focusing on white matter changes in small vessel diseases. METHODS Post-mortem brain tissues from the frontal or temporal lobes of a total of 70 subjects with various disorders including cer...
متن کاملPerivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease.
Alzheimer's disease is the commonest dementia. One major characteristic of its pathology is accumulation of amyloid-beta (Abeta) as insoluble deposits in brain parenchyma and in blood vessel walls [cerebral amyloid angiopathy (CAA)]. The distribution of Abeta deposits in the basement membranes of cerebral capillaries and arteries corresponds to the perivascular drainage pathways by which inters...
متن کاملWhite matter changes in dementia: role of impaired drainage of interstitial fluid.
White matter abnormalities on magnetic resonance imaging (MRI) are associated with dementia and include white matter hyperintensities (WMH; also termed leukoaraiosis) and visible perivascular spaces (PVS). We review the potential role of impaired drainage of interstitial fluid in the pathogenesis of WMH and PVS. Whereas the volume of extracellular space in the grey matter is tightly controlled,...
متن کاملSolutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology.
UNLABELLED Elimination of interstitial fluid and solutes plays a role in homeostasis in the brain, but the pathways are unclear. Previous work suggests that interstitial fluid drains along the walls of arteries. AIMS to define the pathways within the walls of capillaries and arteries for drainage of fluid and solutes out of the brain. METHODS Fluorescent soluble tracers, dextran (3 kDa) and...
متن کاملDisruption of Arterial Perivascular Drainage of Amyloid-β from the Brains of Mice Expressing the Human APOE ε4 Allele
Failure of elimination of amyloid-β (Aβ) from the brain and vasculature appears to be a key factor in the etiology of sporadic Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). In addition to age, possession of an apolipoprotein E (APOE) ε4 allele is a strong risk factor for the development of sporadic AD. The present study tested the hypothesis that possession of the APOE ε4 alle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 33 شماره
صفحات -
تاریخ انتشار 2017