A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication.
نویسندگان
چکیده
Intracellular pathogens manipulate host organelles to support replication within cells. For Legionella pneumophila, the bacterium translocates proteins that establish an endoplasmic reticulum (ER)-associated replication compartment. We show here that the bacterial Sde proteins target host reticulon 4 (Rtn4) to control tubular ER dynamics, resulting in tubule rearrangements as well as alterations in Rtn4 associated with the replication compartment. These rearrangements are triggered via Sde-promoted ubiquitin transfer to Rtn4, occurring almost immediately after bacterial uptake. Ubiquitin transfer requires two sequential enzymatic activities from a single Sde polypeptide: an ADP-ribosyltransferase and a nucleotidase/phosphohydrolase. The ADP-ribosylated moiety of ubiquitin is a substrate for the nucleotidase/phosphohydrolase, resulting in either transfer of ubiquitin to Rtn4 or phosphoribosylation of ubiquitin in the absence of a ubiquitination target. Therefore, a single bacterial protein drives a multistep biochemical pathway to control ubiquitination and tubular ER function independently of the host ubiquitin machinery.
منابع مشابه
LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway.
Legionella pneumophila uses a type IV secretion system to deliver effector molecules into the host cell and establish its replication vacuole. In this study, we investigated the role of LidA, a translocated substrate associated with the surface of the L. pneumophila-containing vacuole. LidA is secreted into the host cell throughout the replication cycle of the bacteria and associates with compa...
متن کاملFormation of the Legionella Replicative Compartment at the Crossroads of Retrograde Trafficking
Retrograde trafficking from the endosomal system through the Golgi apparatus back to the endoplasmic reticulum is an essential pathway in eukaryotic cells, serving to maintain organelle identity and to recycle empty cargo receptors delivered by the secretory pathway. Intracellular replication of several bacterial pathogens, including Legionella pneumophila, is restricted by the retrograde traff...
متن کاملStructural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA.
Bacterial pathogens deliver effector proteins with diverse biochemical activities into host cells, thereby modulating various host functions. Legionella pneumophila hijacks host vesicle trafficking to avoid phagosome-lysosome fusion, a mechanism that is dependent on the Legionella Dot/Icm type IV secretion system. SidM/DrrA, a Legionella type IV effector, is important for the interactions of Le...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملThe Machinery at Endoplasmic Reticulum-Plasma Membrane Contact Sites Contributes to Spatial Regulation of Multiple Legionella Effector Proteins
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell host & microbe
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2017