Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering.
نویسندگان
چکیده
Human induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) are a promising choice of patient-specific stem cells with superior capability of cell expansion. There has been no report on bone morphogenic protein 2 (BMP2) gene modification of iPSC-MSCs for bone tissue engineering. The objectives of this study were to: (1) genetically modify iPSC-MSCs for BMP2 delivery; and (2) to seed BMP2 gene-modified iPSC-MSCs on calcium phosphate cement (CPC) immobilized with RGD for bone tissue engineering. iPSC-MSCs were infected with green fluorescence protein (GFP-iPSC-MSCs), or BMP2 lentivirus (BMP2-iPSC-MSCs). High levels of GFP expression were detected and more than 68% of GFP-iPSC-MSCs were GFP positive. BMP2-iPSC-MSCs expressed higher BMP2 levels than iPSC-MSCs in quantitative RT-PCR and ELISA assays (p < 0.05). BMP2-iPSC-MSCs did not compromise growth kinetics and cell cycle stages compared to iPSC-MSCs. After 14 d in osteogenic medium, ALP activity of BMP2-iPSC-MSCs was 1.8 times that of iPSC-MSCs (p < 0.05), indicating that BMP2 gene transduction of iPSC-MSCs enhanced osteogenic differentiation. BMP2-iPSC-MSCs were seeded on CPC scaffold biofunctionalized with RGD (RGD-CPC). BMP2-iPSC-MSCs attached well on RGD-CPC. At 14 d, COL1A1 expression of BMP2-iPSC-MSCs was 1.9 times that of iPSC-MSCs. OC expression of BMP2-iPSC-MSCs was 2.3 times that of iPSC-MSCs. Bone matrix mineralization by BMP2-iPSC-MSCs was 1.8 times that of iPSC-MSCs at 21 d. In conclusion, iPSC-MSCs seeded on CPC were suitable for bone tissue engineering. BMP2 gene-modified iPSC-MSCs on RGD-CPC underwent osteogenic differentiation, and the overexpression of BMP2 in iPSC-MSCs enhanced differentiation and bone mineral production on RGD-CPC. BMP2-iPSC-MSC seeding on RGD-CPC scaffold is promising to enhance bone regeneration efficacy.
منابع مشابه
Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملCytotoxicity of Chitosan Derived from Shrimp for Bone Scaffold on Adipose Tissue-Derived Mesenchymal Stem Cells
متن کامل
Mesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury
Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...
متن کاملAttachment, Proliferation, and Chondroinduction of Mesenchymal Stem Cells on Porous Chitosan-Calcium Phosphate Scaffolds
Symptomatic osteochondral lesions occur frequently, but relatively few treatment options are currently available. The purpose of this study was to conduct a preliminary investigation into a new tissue engineering approach to osteochondral regeneration. The concept is a biphasic construct consisting of a porous, osteoconductive chitosan-calcium phosphate scaffold supporting a layer of neocartila...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 34 32 شماره
صفحات -
تاریخ انتشار 2013