Minimum essential factors required for vesicle mobilization at hippocampal synapses.

نویسندگان

  • Marina G Mozhayeva
  • Maria F Matos
  • Xinran Liu
  • Ege T Kavalali
چکیده

Studies on the mechanisms that underlie the function of small central presynaptic terminals have been hampered by the inaccessibility of these synapses to soluble reagents. Here, we permeabilized hippocampal synapses in culture, manipulated their interior, and monitored the resulting changes in vesicle mobilization with the styryl dye FM2-10. Using this method, we found that 1 microm Ca2+ after incubation with GTP or GTP-gamma-S could mobilize approximately 90% of the total recycling pool, whereas 1 microm Ca2+ application after dialysis of permeabilized synapses with GDP-beta-S mobilized approximately 30% of the recycling vesicles, presumably corresponding to the readily releasable pool. In electron micrographs of permeabilized hippocampal synapses stimulated with 1 microm Ca2+, we could detect significant vesicle depletion after preincubation with GTP-gamma-S, whereas preincubation with GDP-beta-S left the total vesicle pool relatively intact. Taken together, in this system replenishment of the readily releasable pool by the reserve vesicles was strictly GTP dependent. In contrast, vesicle replenishment and release did not require ATP or N-ethylmaleimide-sensitive factor (NSF); however, this process involved formation of new soluble NSF-attachment protein receptor (SNARE) complexes as judged by its sensitivity to tetanus toxin. These results suggest that in hippocampal synapses, vesicle mobilization and replenishment of the readily releasable pool require GTP and Ca2+ but do not necessitate ATP-dependent priming and SNARE recycling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic vesicle recycling adapts to chronic changes in activity.

Synaptic vesicle recycling is essential for maintaining neurotransmission during rhythmic activity. To test whether the demands imposed by ambient activity influences synaptic vesicle trafficking, we compared the kinetics of synaptic depression in hippocampal versus neocortical cultures, which have high and low levels of intrinsic activity, respectively. In response to moderate 10 Hz stimulatio...

متن کامل

Vesicle pool mobilization during action potential firing at hippocampal synapses

Using the fluorescent membrane label FM 1-43, we have measured the release, reuptake, and repriming of synaptic vesicles in response to action potential stimulation of cultured hippocampal neurons. We find that approximately 90% of a recycling vesicle pool is released during 60 s of 10 Hz action potential firing, and that a single action potential releases approximately 0.5% of that pool. Our d...

متن کامل

Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP

Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day ...

متن کامل

Fast vesicle recycling supports neurotransmission during sustained stimulation at hippocampal synapses.

High-frequency induced short-term synaptic depression is a common feature of central synapses in which synaptic responses rapidly decrease to a sustained level. A limitation in the availability of release-ready vesicles is thought to be a major factor underlying this phenomenon. Here, we studied the kinetics of vesicle reavailability and reuse during synaptic depression at hippocampal synapses....

متن کامل

Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice.

Brain-derived neurotrophic factor (BDNF) promotes long-term potentiation (LTP) at hippocampal CA1 synapses by a presynaptic enhancement of synaptic transmission during high-frequency stimulation (HFS). Here we have investigated the mechanisms of BDNF action using two lines of BDNF knockout mice. Among other presynaptic impairments, the mutant mice exhibited more pronounced synaptic fatigue at C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 7  شماره 

صفحات  -

تاریخ انتشار 2004