Friction Signal Denoising Using Complete Ensemble EMD with Adaptive Noise and Mutual Information

نویسندگان

  • Chengwei Li
  • Liwei Zhan
  • Liqun Shen
چکیده

During the measurement of friction force, the measured signal generally contains noise. To remove the noise and preserve the important features of the signal, a hybrid filtering method is introduced that uses the mutual information and a new waveform. This new waveform is the difference between the original signal and the sum of intrinsic mode functions (IMFs), which are obtained by empirical mode decomposition (EMD) or its improved versions. To evaluate the filter performance for the friction signal, ensemble EMD (EEMD), complementary ensemble EMD (CEEMD), and complete ensemble EMD with adaptive noise (CEEMDAN) are employed in combination with the proposed filtering method. The combination is used to filter the synthesizing signals at first. For the filtering of the simulation signal, the filtering effect is compared under conditions of different ensemble number, sampling frequency, and the input signal-noise ratio, respectively. Results show that CEEMDAN outperforms other signal filtering methods. In particular, this method is successful in filtering the friction signal as evaluated by the de-trended fluctuation analysis (DFA) algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

An Efficient Method for Knock Signal Denoising in Spark Ignition Engine

One of the factors that affects the efficiency and lifetime of spark ignited internal combustion engine is “knock”. Knock sensor is a commonly used to detect this phenomenon. However, noise, limits detection accuracy of this sensor. In this study, Empirical Mode Decomposition (EMD) method is introduced as a fully adaptive signal-based analysis. Then, based on weighting decomposition...

متن کامل

Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study.

Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and s...

متن کامل

Comparison of Ecg Signal Denoising Algorithms in Emd and Wavelet Domains

This paper presents a detail analysis on the Electrocardiogram (ECG) denoising approaches based on noise reduction algorithms in Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT) domains. Compared to other denoising methods such as; filtering, independent and principle component analysis, neural networks, and adaptive filtering, EMD and wavelet domain denoising algorithms ...

متن کامل

Application of Empirical Mode Decomposition for Ultrasonic Testing of Coarse-grained Materials

Abstract In ultrasonic testing of coarse-grained materials, signal to noise ratio (SNR) of testing signals is reduced seriously for the structure noise, and echoes from defects are difficult to be identified. In order to improve the SNR and the reliability of ultrasonic testing of coarse-grained materials, empirical mode decomposition (EMD) is introduced to process the testing signal here. Sign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015