POWER TYPE UNIFORM CONVEXITY OF X VIA p - ASYMPTOTIC UNIFORM CONVEXITY OF L r ( X

نویسندگان

  • WILLIAM B. JOHNSON
  • W. B. JOHNSON
چکیده

We show that if Lr(X), 1 < r < ∞, has an asymptotically uniformly convex renorming of power type then X admits a uniformly convex norm of power type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

On the maximal ideal space of extended polynomial and rational uniform algebras

Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...

متن کامل

On the Uniform Convexity Of

The standard proof of the uniform convexity of L using Clarkson’s [1] or Hanner’s [2] inequalities (see also [4]) is rarely taught in functional analysis classes, in part (the author imagines) because the proofs of those inequalities are quite non-intuitive and unwieldy. We present here a direct proof, cheerfully sacrificing the optimal bounds – for which, see [2, 4]. It fits quite nicely in wi...

متن کامل

Uniformly Convex Functions on Banach Spaces

We study the connection between uniformly convex functions f : X → R bounded above by ‖ · ‖p, and the existence of norms on X with moduli of convexity of power type. In particular, we show that there exists a uniformly convex function f : X → R bounded above by ‖ · ‖2 if and only if X admits an equivalent norm with modulus of convexity of power type 2.

متن کامل

New Convexity and Fixed Point Properties in Hardy and Lebesgue- Bochner Spaces

We show that for the Hardy class of functions H 1 with domain the ball or polydisc in CN , a certain type of uniform convexity property (the uniform Kadec-Klee-Huff property) holds with respect to the topology of pointwise convergence on the interior; which coincides with both the topology of uniform convergence on compacta and the weak ∗ topology on bounded subsets of H 1. Also, we show that i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007