Fragility and cooperative motion in a glass-forming polymer-nanoparticle composite.

نویسندگان

  • Beatriz A Pazmiño Betancourt
  • Jack F Douglas
  • Francis W Starr
چکیده

Polymer-nanoparticle composites play a vital role in ongoing materials development. The behavior of the glass transition of these materials is important for their processing and applications, and also represents a problem of fundamental physical interest. Changes of the polymer glass transition temperature Tg due to nanoparticles have been fairly well catalogued, but the breadth of the transition and how rapidly transport properties vary with temperature T - termed the fragility m of glass-formation - is comparatively poorly understood. In the present work, we calculate both Tg and m of a model polymer nanocomposite by molecular dynamics simulations. We systematically consider how Tg and m vary both for the material as a whole, as well as locally, for a range of nanoparticle (NP) concentrations and two polymer-NP interactions. We find large positive and negative changes in Tg and m that can be interpreted in terms of the Adam-Gibbs model of glass-formation, where the scale of the cooperative motion is identified with the scale of string-like cooperative motion. This provides a molecular perpective of fragility changes due to the addition of NPs and for glass formation more generally. We also contrast the behavior along isobaric and isochoric approaches to Tg , since these differing paths can be important to compare experiments (isobaric) and simulations (very often isochoric). Our findings have practical implications for understanding the properties of nanocomposites and fundamental significance for understanding the properties glass-forming materials more broadly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fragility and Cooperative Motion in Polymer Glass Formation

We briefly review our findings on the relationship between the fragility of glass formation and cooperative motion, focusing on a simple glass-forming polymer melt. We identify string-like cooperative motions with the hypothetical ‘cooperatively rearranging regions’ of the Adam-Gibbs (AG) description, thereby providing a molecular basis for this interpretation. Moreover, these strings can be de...

متن کامل

Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials.

The study of glass formation is largely framed by semiempirical models that emphasize the importance of progressively growing cooperative motion accompanying the drop in fluid configurational entropy, emergent elasticity, or the vanishing of accessible free volume available for molecular motion in cooled liquids. We investigate the extent to which these descriptions are related through computat...

متن کامل

Modifying fragility and collective motion in polymer melts with nanoparticles.

We investigate the impact of nanoparticles (NP) on the fragility and cooperative stringlike motion in a model glass-forming polymer melt by molecular dynamics simulation. The NP cause significant changes to both the fragility and the average length of stringlike motion, where the effect depends on the NP-polymer interaction and NP concentration. We interpret these changes via the Adam-Gibbs (AG...

متن کامل

Evaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite

Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...

متن کامل

String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt.

Relaxation in glass-forming liquids occurs as a multi-stage hierarchical process involving cooperative molecular motion. First, there is a "fast" relaxation process dominated by the inertial motion of the molecules whose amplitude grows upon heating, followed by a longer time α-relaxation process involving both large-scale diffusive molecular motion and momentum diffusion. Our molecular dynamic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2013