Optical Response of Fluorescent Molecules Studied by Synthetic Femtosecond Laser Pulses.

نویسندگان

  • Arkaprabha Konar
  • Jay D Shah
  • Vadim V Lozovoy
  • Marcos Dantus
چکیده

The optical response of the fluorescent molecule IR144 in solution is probed by pairs of collinear pulses with intensity just above the linear dependence using two different pulse shaping methods. The first approach mimics a Michelson interferometer, while the second approach, known as multiple independent comb shaping (MICS), eliminates spectral interference. The comparison of interfering and non-interfering pulses reveals that linear interference between the pulses leads to the loss of experimental information at early delay times. In both cases, the delay between the pulses is controlled with attosecond resolution and the sample fluorescence and stimulated emission are monitored simultaneously. An out-of-phase behavior is observed for fluorescence and stimulated emission, with the fluorescence signal having a minimum at zero time delay. Experimental findings are modeled using a two-level system with relaxation that closely matches the phase difference between fluorescence and stimulated emission and the relative intensities of the measured effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Femtosecond Laser Written Waveguides for Integrated Biochemical Sensing

Fluorescence detection is known to be one of the most sensitive among the different optical sensing techniques. This work focuses on excitation and detection of fluorescence emitted by DNA strands labeled with fluorescent dye molecules that can be excited at a specific wavelength. Excitation occurs via optical channel waveguides written with femtosecond laser pulses applied coplanar with a micr...

متن کامل

Growth, Characterization of Cu Nanoparticles Thin Film by Nd: YAG Laser Pulses Deposition

We report the growth and characterization of Cu nanoparticles thin film of on glass substrate by pulse laser deposition method. The Cu thin film prepared with different energy 50, 60, 70, and 80 mJ. The energy effect on the morphological, structural and optical properties were studied by AFM, XRD and UV-Visible spectrophotometer. Surface topography studied by atomic force microscopy revealed na...

متن کامل

The study of propagation of a femtosecond laser pulse in the breast tissue

In this paper, the evaluation of time profile of a femtosecond pulse laser propagated through biological tissues is studied. The majority of the biological tissues with a high scattering anisotropy must be considered as turbid media, that their optical responses are complicated. To study the propagation of ultra-short pulse in turbid media, the diffuse equation is used. In this study, the analy...

متن کامل

Transmission Welding of Glasses by Femtosecond Laser: Structural and Mechanical Properties

Femtosecond laser pulses were focused on the interface of two glass specimens. Proper use of optical and laser processing parameters enables transmission welding. The morphology of the weld cross section was studied using differential interference contrast optical microscopy. The changes in mechanical properties of the weld seams were studied through spatially resolved nanoindentation, and inde...

متن کامل

On the Nature of “Coherent Artifact”

The coherent interaction of femtosecond laser pulses in the pump–probe regime has been experimentally studied in the time domain by monitoring light reflection from a tellurium single crystal. The optical response of the probed medium exhibits periodic variations at a frequency equal to that of the exciting laser radiation. Experimental dependences of the observed “coherent artifact” on the pum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 3 10  شماره 

صفحات  -

تاریخ انتشار 2012