Interpolated pressure laws in two-fluid simulations and hyperbolicity
نویسندگان
چکیده
We consider a two-fluid compressible flow. Each fluid obeys a stiffened gas pressure law. The continuous model is well defined without considering mixture regions. However, for numerical applications it is often necessary to consider artificial mixtures, because the two-fluid interface is diffused by the numerical scheme. We show that classic pressure law interpolations lead to a non-convex hyperbolicity domain and failure of well-known numerical schemes. We propose a physically relevant pressure law interpolation construction and show that it leads to a necessary modification of the pure phase pressure laws. We also propose a numerical scheme that permits to approximate the stiffened gas model without artificial mixture.
منابع مشابه
CFD Simulation of Gas-Solid Two-Phase Flow in Pneumatic Conveying of Wheat
Computational Fluid Dynamics (CFD) simulations of gas-solid flow through a positive low-pressure pneumatic conveyor were performed using Eulerian-Eulerian framework. Pressure drop in pneumatic conveying pipelines, creation and destruction of plugs along the horizontal and vertical pipes, effect of 90° elbows and U-bends on cross-section concentrations, and rope formation and dispersion were...
متن کاملCFD Simulations of Pressure Drop in KATAPAK-S Structured Packing
KATAPAK-S is a type of structured catalytic packing, which is used in reactive distillation processes. The dry pressure drop characteristic (the pressure drop in the absence of liquid flow) is of significant importance for the investigation of process hydrodynamics. In this paper, the dry pressure drop within the catalyst packed channels of KATAPAK-S has been investigated using Computational Fl...
متن کاملNumerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds
Fluid flow has a fundamental role in the performance of packed bed reactors. Some related issues, such as pressure drop, are strongly affected by porosity, so non-spherical particles are used in industry for enhancement or creation of the desired porosity. In this study, the effects of particle shape, size, and porosity of the bed on the hydrodynamics of packed beds are investigated with three ...
متن کاملLack of Hyperbolicity in the Two-fluid Model for Two-phase Incompressible Flow
The two-fluid equations for two-phase flow, a model derived by averaging, analogy and experimental observation, have the property (in at least some commonly-occurring derivations) of losing hyperbolicity in their principal parts, those representing the chief entries in modeling conservation of mass and transfer of momentum and energy. Much attention has centered on reformulating details of the ...
متن کاملPrediction of Pressure Drop of Al2O3-Water Nanofluid in Flat Tubes Using CFD and Artificial Neural Networks
In the present study, Computational Fluid Dynamics (CFD) techniques and Artificial Neural Networks (ANN) are used to predict the pressure drop value (Δp ) of Al2O3-water nanofluid in flat tubes. Δp is predicted taking into account five input variables: tube flattening (H), inlet volumetric flow rate (Qi ), wall heat flux (qnw ), nanoparticle volume fraction (Φ) and nanoparticle diameter (dp ...
متن کامل