Catalytic reaction dynamics in inhomogeneous networks.

نویسندگان

  • Akitomo Watanabe
  • Kousuke Yakubo
چکیده

Biochemical reactions in a cell can be modeled by a catalytic reaction network (CRN). It has been reported that catalytic chain reactions occur intermittently in the CRN with a homogeneous random-graph topology and its avalanche-size distribution obeys a power law with the exponent 4/3 [A. Awazu and K. Kaneko, Phys. Rev. E 80, 010902(R) (2009)]. This fact indicates that the catalytic reaction dynamics in homogeneous CRNs exhibits self-organized criticality (SOC). Structures of actual CRNs are, however, known to be highly inhomogeneous. We study the influence of various types of inhomogeneities found in real-world metabolic networks on the universality class of SOC. Our numerical results clarify that SOC keeps its universality class even for networks possessing structural inhomogeneities such as the scale-free property, community structures, and degree correlations. In contrast, if the CRN has inhomogeneous catalytic functionality, the universality class of SOC depends on how widely distributed the number of reaction paths catalyzed by a single chemical species is.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systemic stability, cell differentiation, and evolution - A dynamical systems perspective

Species or population that proliferate faster than others become dominant in numbers. Catalysis allows catalytic sets within a molecular reaction network to dominate the non catalytic parts of the network by processing most of the available substrate. As a consequence one may consider a ’catalytic fitness’ of sets of molecular species. The fittest sets emerge as the expressed chemical backbone ...

متن کامل

Dynamics of autocatalytic reaction networks. IV: Inhomogeneous replicator networks.

The inhomogeneous replicator equation is derived as the continuous time model for parallel first and second order autocatalytic replication of macromolecules in a flow reactor based on mass action kinetics. It is shown that the total concentration of replicating material determines the relative importance of the first order and the second order mechanism. A complete description of the dynamics ...

متن کامل

Influence of surface diffusion on catalytic reactivity of spatially inhomogeneous surfaces – mean field modeling February 2 , 2008

Kinetics of model catalytic processes proceeding on inhomogeneous surfaces is studied. We employ an extended mean-field model that takes into account surface inhomogeneities. The influence of surface diffusion of adsorbent on the kinetics of the catalytic process is investigated. It is shown that diffusion is responsible for differences in the reaction rate of systems with different arrangement...

متن کامل

A model of protocell based on the introduction of a semi-permeable membrane in a stochastic model of catalytic reaction networks

The theoretical characterization of the self-organizing molecular structures emerging from ensembles of distinct interacting chemicals turns to be very important in revealing those dynamics that led to the transition from the non-living to the living matter as well as in the design of artificial protocells [12, 13, 14]. In this work we aim at studying the role of a semi-permeable membrane, i.e....

متن کامل

Catalysis by Self-Assembled Structures in Emergent Reaction Networks

We study a new variant of the dissipative particle dynamics (DPD) model that includes the possibility of dynamically forming and breaking strong bonds. The emergent reaction kinetics may then interact with self-assembly processes. We observe that self-assembled amphiphilic aggregations such as micelles have a catalytic effect on chemical reaction networks, changing both equilibrium concentratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 5  شماره 

صفحات  -

تاریخ انتشار 2014