A method for estimating the CTF in electron microscopy based on ARMA models and parameter adjustment.

نویسندگان

  • J A Velázquez-Muriel
  • C O S Sorzano
  • J J Fernández
  • J M Carazo
چکیده

In this work, a powerful parametric spectral estimation technique, 2D-auto regressive moving average modeling (ARMA), has been applied to contrast transfer function (CTF) detection in electron microscopy. Parametric techniques such as auto regressive (AR) and ARMA models allow a more exact determination of the CTF than traditional methods based only on the Fourier transform of the complete image or parts of it and performing some average (periodogram averaging). Previous works revealed that AR models can be used to improve CTF estimation and the detection of its zeros. ARMA models reduce the model order and the computing time, and more interestingly, achieve increased accuracy. ARMA models are generated from electron microscopy (EM) images, and then a stepwise search algorithm is used to fit all the parameters of a theoretical CTF model in the ARMA model previously calculated. Furthermore, this adjustment is truly two-dimensional, allowing astigmatic images to be properly treated. Finally, an individual CTF can be assigned to every point of the micrograph, by means of an interpolation at the functional level, provided that a CTF has been estimated in each one of a set of local areas. The user need only know a few a priori parameters of the experimental conditions of his micrographs, for turning this technique into an automatic and very powerful tool for CTF determination, prior to CTF correction in 3D-EM. The programs developed for the above tasks have been integrated into the X-Windows-based Microscopy Image Processing Package (Xmipp) software package, and are fully accessible at www.biocomp.cnb.uam.es.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Dimensional Arma Models and Parameter Adjustment to Estimate the Ctf of the Electron Microscope

A powerful parametric spectral estimation technique, 2D-ARMA (Auto Regressive Moving Average) modeling, has been applied to contrast transfer function (CTF) detection in electron microscopy. Parametric techniques such as AR (auto regressive) and ARMA models allow a more exact determination of the CTF than traditional methods based only on the Fourier Transform (FT). Previous works revealed that...

متن کامل

ACE: automated CTF estimation.

We present a completely automated algorithm for estimating the parameters of the contrast transfer function (CTF) of a transmission electron microscope. The primary contribution of this paper is the determination of the astigmatism prior to the estimation of the CTF parameters. The CTF parameter estimation is then reduced to a 1D problem using elliptical averaging. We have also implemented an a...

متن کامل

Monitoring Financial Processes with ARMA-GARCH Model Based on Shewhart Control Chart (Case Study: Tehran Stock Exchange)

Financial surveillance is an interesting area after financial crisis in recent years. In this subject, important financial indices are monitored using control charts. Control chart is a powerful instrument for detecting assignable causes which is considerably developed in industrial and service environments. In this paper, a monitoring procedure based on Shewhart control chart is proposed to mo...

متن کامل

Fast, robust, and accurate determination of transmission electron microscopy contrast transfer function.

Transmission electron microscopy, as most imaging devices, introduces optical aberrations that in the case of thin specimens are usually modeled in Fourier space by the so-called contrast transfer function (CTF). Accurate determination of the CTF is crucial for its posterior correction. Furthermore, the CTF estimation must be fast and robust if high-throughput three-dimensional electron microsc...

متن کامل

Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling

One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultramicroscopy

دوره 96 1  شماره 

صفحات  -

تاریخ انتشار 2003