Improving Land-cover Classification Using Recognition Threshold Neural Networks
نویسندگان
چکیده
The use of neural networks to classify land-cover from remote sensing imagery relies on the ability to determine a winner from the candidate land-cover types based on the imagery information available. In the case of a “winnertakes-all” scenario, this does not allow us a measure of how much the prediction of each pixel’s land-cover can be trusted. We present a three-stage method where only winning candidates which are given a clear lead over the other land-cover types are accepted, with a neighborhood relationship and the application of mixed pixels being used to provide full classification. This method allows us to place more faith in the resulting map than simply taking the winner, and results in a higher accuracy of classification. The method is applied to Landsat imagery of an area of the Philippines where natural, urban, and cultivated land-cover types exist.
منابع مشابه
Effect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملLand Cover Classification from MODIS Satellite Data Using Probabilistically Optimal Ensemble of Artificial Neural Networks
Terra and Aqua, 2 satellites launched by the NASA-centered international Earth Observing System project, house MODIS (Moderate Resolution Imaging Spectroradiometer) sensors. Moderate resolution remote sensing allows the quantifying of land surface type and extent, which can be used to monitor changes in land cover and land use for extended periods of time. In this paper, we propose applying a p...
متن کاملUsing Post-Classification Enhancement in Improving the Classification of Land Use/Cover of Arid Region (A Case Study in Pishkouh Watershed, Center of Iran)
Classifying remote sensing imageries to obtain reliable and accurate LandUse/Cover (LUC) information still remains a challenge that depends on many factors suchas complexity of landscape especially in arid region. The aim of this paper is to extractreliable LUC information from Land sat imageries of the Pishkouh watershed of centralarid region, Iran. The classical Maximum Likelihood Classifier ...
متن کاملArtificial Neural Network: A Tool for Classification of Land Use and Land Covers Using Satellite Images
An artificial neural network is a system based on the operation of biological neural networks, in other words, is an emulation of biological neural system. Artificial Neural Networks or simply Neural Networks are powerful general purpose computing tools. They have become popular in the analysis of remotely sensed data, particularly in classification or feature extraction from image data more ac...
متن کاملLand-Use Classification of Remotely Sensed Data Using Kohonen Self-organizing Feature Map Neural Networks
I The use of Kohonen Self-organizing Feature Map (KSOFM, or feature map) neural networks for land-use/land-cover classification from remotely sensed data is presented. Different from the traditional multi-layer neural networks, the KSOFM is a two-layer network that creates class representation by selforganizing the connection weights from the input patterns to the output layer. A test of the al...
متن کامل