Signal amplification by rolling circle amplification on DNA microarrays.

نویسندگان

  • G Nallur
  • C Luo
  • L Fang
  • S Cooley
  • V Dave
  • J Lambert
  • K Kukanskis
  • S Kingsmore
  • R Lasken
  • B Schweitzer
چکیده

While microarrays hold considerable promise in large-scale biology on account of their massively parallel analytical nature, there is a need for compatible signal amplification procedures to increase sensitivity without loss of multiplexing. Rolling circle amplification (RCA) is a molecular amplification method with the unique property of product localization. This report describes the application of RCA signal amplification for multiplexed, direct detection and quantitation of nucleic acid targets on planar glass and gel-coated microarrays. As few as 150 molecules bound to the surface of microarrays can be detected using RCA. Because of the linear kinetics of RCA, nucleic acid target molecules may be measured with a dynamic range of four orders of magnitude. Consequently, RCA is a promising technology for the direct measurement of nucleic acids on microarrays without the need for a potentially biasing preamplification step.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Method for manufacturing whole-genome microarrays by rolling circle amplification.

Comparative genomic hybridization (CGH) to metaphase chromosomes is a method for genome-wide detection of chromosomal aberrations in DNA samples. Recent advances in microarray technology have improved CGH by replacing metaphase chromosomes with a collection of mapped genomic clones placed on glass slides. However, it is quite expensive and labor-intensive to prepare DNA from the genomic clones ...

متن کامل

Coupled rolling circle amplification loop-mediated amplification for rapid detection of short DNA sequences.

Circularizable oligonucleotide probes can detect short DNA sequences with single-base resolution at the site of ligation and can be amplified by rolling circle amplification (RCA) using strand displacing polymerases. A secondary amplification scheme was developed that uses the loop-mediated amplification reaction concurrent with RCA to achieve rapid signal development from the starting circular...

متن کامل

A cascade signal amplification strategy for sensitive and label-free DNA detection based on Exo III-catalyzed recycling coupled with rolling circle amplification.

A sensitive and label-free fluorescence assay for DNA detection has been developed based on cascade signal amplification combining exonuclease III (Exo III)-catalyzed recycling with rolling circle amplification. In this assay, probe DNA hybridized with template DNA was coupled onto magnetic nanoparticles to prepare a magnetic bead-probe (MNB-probe)-template complex. The complex could hybridize ...

متن کامل

Signal amplification of padlock probes by rolling circle replication.

Circularizing oligonucleotide probes (padlock probes) have the potential to detect sets of gene sequences with high specificity and excellent selectivity for sequence variants, but sensitivity of detection has been limiting. By using a rolling circle replication (RCR) mechanism, circularized but not unreacted probes can yield a powerful signal amplification. We demonstrate here that in order fo...

متن کامل

Sensitive isothermal detection of nucleic-acid sequence by primer generation–rolling circle amplification

A simple isothermal nucleic-acid amplification reaction, primer generation-rolling circle amplification (PG-RCA), was developed to detect specific nucleic-acid sequences of sample DNA. This amplification method is achievable at a constant temperature (e.g. 60 degrees C) simply by mixing circular single-stranded DNA probe, DNA polymerase and nicking enzyme. Unlike conventional nucleic-acid ampli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 23  شماره 

صفحات  -

تاریخ انتشار 2001