Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages
نویسندگان
چکیده
BACKGROUND Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. PRINCIPAL FINDINGS In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. CONCLUSIONS These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage associated stresses.
منابع مشابه
Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis.
The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) ...
متن کاملYersinia pestis Intracellular Parasitism of Macrophages from Hosts Exhibiting High and Low Severity of Plague
BACKGROUND Yersinia pestis causes severe disease in natural rodent hosts, but mild to inapparent disease in certain rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts by parasitizing and multiplying intracellularly in local macrophages prior to systemic dissemination. Thus, we hypothesize that Y. pestis disease severity may depend on the degree to which intracellu...
متن کاملThe Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague.
The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in stra...
متن کاملBiochemical, Structural and Molecular Dynamics Analyses of the Potential Virulence Factor RipA from Yersinia pestis
Human diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly. A previous study has shown that a novel rip ...
متن کاملDifferential regulation of the hmsCDE operon in Yersinia pestis and Yersinia pseudotuberculosis by the Rcs phosphorelay system
Yersinia pestis, the agent of plague, forms a biofilm in its flea vector to enhance transmission. Y. pestis biofilm development is positively regulated by hmsT and hmsD, encoding diguanylate cyclases (DGCs) involved in synthesis of the bacterial second messenger c-di-GMP. rcsA, encoding an auxiliary protein in Rcs phosphorelay, is nonfunctional in Y. pestis, while in Yersinia pseudotuberculosis...
متن کامل