Pick Your Neighborhood - Improving Labels and Neighborhood Structure for Label Propagation

نویسندگان

  • Sandra Ebert
  • Mario Fritz
  • Bernt Schiele
چکیده

Graph-based methods are very popular in semi-supervised learning due to their well founded theoretical background, intuitive interpretation of local neighborhood structure, and strong performance on a wide range of challenging learning problems. However, the success of these methods is highly dependent on the pre-existing neighborhood structure in the data used to construct the graph. In this paper, we use metric learning to improve this critical step by increasing the precision of the nearest neighbors and building our graph in this new metric space. We show that learning of neighborhood relations before constructing the graph consistently improves performance of two label propagation schemes on three different datasets – achieving the best performance reported on Caltech 101 to date. Furthermore, we question the predominant random draw of labels and advocate the importance of the choice of labeled examples. Orthogonal to active learning schemes, we investigate how domain knowledge can substantially increase performance in these semi-supervised learning settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Label Propagation with α-Degree Neighborhood Impact for Network Community Detection

Community detection is an important task for mining the structure and function of complex networks. In this paper, a novel label propagation approach with α-degree neighborhood impact is proposed for efficiently and effectively detecting communities in networks. Firstly, we calculate the neighborhood impact of each node in a network within the scope of its α-degree neighborhood network by using...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Discriminative Supervised Neighborhood Preserving Embedding Feature Extraction for Hyperspectral-image Classification

A novel discriminative supervised neighborhood preserving embedding (DSNPE) method is proposed for feature extraction in classifying hyperspectral remote sensing imagery. DSNPE can preserve the local manifold structure and the neighborhood structure. What’s more, for each data point, DSNPE aims at pulling the neighboring points with the same class label towards it as near as possible, while sim...

متن کامل

Semi-Supervised Learning on Graphs Based on Local Label Distributions

In this work, we propose a novel approach for the semi-supervised node classification. Precisely, we propose a method which takes labels in the local neighborhood of different locality levels into consideration. Most previous approaches that tackle the problem of node classification consider nodes to be similar, if they have shared neighbors or are close to each other in the graph. Recent metho...

متن کامل

Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011