Hydrokinetic Turbine Effects on Fish Swimming Behaviour
نویسندگان
چکیده
Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1). The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts.
منابع مشابه
A Probabilistic Model for Hydrokinetic Turbine Collision Risks: Exploring Impacts on Fish
A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any...
متن کاملNumerical analysis of on the effects of Hydrokinetic turbine presence in flow structure of a compound open-channel
In the recent years, due to the hydropower plants environmental problems, hydrokinetic turbine usages has been increased. Using such turbines in rivers modify natural flow-field. In previous studies, impacts of turbine on the flow-field just only in rectangular open-channel is studied. In this work, the effects of hydrokinetic turbine in a straight compound channel has been numerically studied ...
متن کاملCharacterizing the Juvenile Fish Community in Turbid Alaskan Rivers to Assess Potential Interactions with Hydrokinetic Devices
Installation of hydrokinetic power-generating devices is currently being considered for the Yukon and Tanana rivers, two large and glacially turbid rivers in Alaska. We sampled downstream-migrating fish along the margins of both rivers, a middle island in the Yukon River, and mid-channel in the Tanana River in order to assess the temporal and spatial patterns of movement by resident and anadrom...
متن کاملInteractions between turbulent open channel flow, power and the wake of an axial-flow marine turbine
I. Introduction Until recently, an understanding of the range of scales of turbulent flow and its dynamic interaction with the performance and wake characteristics of axial-flow marine hydrokinetic turbines was lacking. Advancing this area of knowledge within the field of marine and hydrokinetic energy research, development, and deployment will lead to more efficient turbine operations and redu...
متن کاملNumerical Simulation of a Cross Flow Marine Hydrokinetic Turbine
Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine.
متن کامل