Agn Heating and Dissipative Processes in Galaxy Clusters
نویسندگان
چکیده
Recent X-ray observations reveal growing evidence for heating by active galactic nuclei (AGN) in clusters and groups of galaxies. AGN outflows play a crucial role in explaining the riddle of cooling flows and the entropy problem in clusters. Here we study the effect of AGN on the intra-cluster medium in a cosmological simulation using the adaptive mesh refinement FLASH code. We pay particular attention to the effects of conductivity and viscosity on the dissipation of weak shocks generated by the AGN activity in a realistic galaxy cluster. Our 3D simulations demonstrate that both viscous and conductive dissipation play an important role in distributing the mechanical energy injected by the AGN, offsetting radiative cooling and injecting entropy to the gas. These processes are important even when the transport coefficients are at a level of 10% of the Spitzer value. Provided that both conductivity and viscosity are suppressed by a comparable amount, conductive dissipation is likely to dominate over viscous dissipation. Nevertheless, viscous effects may still affect the dynamics of the gas and contribute a significant amount of dissipation compared to radiative cooling. We also present synthetic Chandra observations. We show that the simulated buoyant bubbles inflated by the AGN, and weak shocks associated with them, are detectable with the Chandra observatory. Subject headings: galaxies: active galaxies: clusters: cooling flows X-rays: galaxies
منابع مشابه
An Observationally Motivated Framework for AGN Heating of Cluster Cores
The cooling-flow problem is a long-standing puzzle that has received considerable recent attention, in part because the mechanism that quenches cooling flows in galaxy clusters is likely to be the same mechanism that sharply truncates the high end of the galaxy luminosity function. Most of the recent models for halting cooling in clusters have focused on AGN heating, but the actual heating mech...
متن کاملFeedback in AGN heating of galaxy clusters
One of the challenges that models of AGN heating of the intracluster medium (ICM) face, is the question how the mechanical luminosity of the AGN is tuned to the radiative losses of the ICM. Here we implement a simple 1D model of a feedback mechanism that links the luminosity of the AGN to the accretion rate. We demonstrate how this simple feedback mechanism leads to a quasi-steady state for a b...
متن کاملاندازهگیری نمایه عمق نوری خوشههای کهکشانی با استفاده از اثرسونیائف زلدوویچ جنبشی
baryonic matter distribution in the large-scale structures is one of the main questions in cosmology. This distribution can provide valuable information regarding the processes of galaxy formation and evolution. On the other hand, the missing baryon problem is still under debate. One of the most important cosmological structures for studying the rate and the distribution of the baryons is gal...
متن کاملFeedback in Active Galactic Nucleus Heating of Galaxy Clusters
One of the challenges that models of active galactic nucleus (AGN) heating of the intracluster medium (ICM) face is to explain how the mechanical luminosity of the AGN is tuned to the radiative losses of the ICM. Here we implement a simple one-dimensional model of a feedback mechanism that links the luminosity of the AGN to the accretion rate. We demonstrate how this simple feedback mechanism l...
متن کاملEntropy “floor” and Effervescent Heating of Intracluster Gas
Recent X-ray observations of clusters of galaxies have shown that the entropy of the intracluster medium (ICM), even at radii as large as half the virial radius, is higher than that expected from gravitational processes alone. This is thought to be the result of nongravitational processes influencing the physical state of the ICM. In this paper, we investigate whether heating by a central AGN c...
متن کامل