Understanding and controlling organic-inorganic interfaces in mesostructured hybrid photovoltaic materials.
نویسندگان
چکیده
The chemical compositions and structures of organic-inorganic interfaces in mesostructurally ordered conjugated polymer-titania nanocomposites are shown to have a predominant influence on their photovoltaic properties. Such interfaces can be controlled by using surfactant structure-directing agents (SDAs) with different architectures and molecular weights to promote contact between the highly hydrophobic electron-donating conjugated polymer species and hydrophilic electron-accepting titania frameworks. A combination of small-angle X-ray scattering (SAXS), scanning and transmission electron microscopy (SEM, TEM), and solid-state NMR spectroscopy yields insights on the compositions, structures, and distributions of inorganic and organic species within the materials over multiple length scales. Two-dimensional NMR analyses establish the molecular-level interactions between the different SDA blocks, the conjugated polymer, and the titania framework, which are correlated with steady-state and time-resolved photoluminescence measurements of the photoexcitation dynamics of the conjugated polymer and macroscopic photocurrent generation in photovoltaic devices. Molecular understanding of the compositions and chemical interactions at organic-inorganic interfaces are shown to enable the design, synthesis, and control of the photovoltaic properties of hybrid functional materials.
منابع مشابه
Effect of TiO2 Nanofiber Density on Organic-Inorganic Based Hybrid Solar Cells (RESEARCH NOTE)
Abstract In this work, a comparative study of hybrid solar cells based on P3HT and TiO2 nanofibers was accomplished. Electrospinning, a low cost production method for large area nanofibrous films, was employed to fabricate the organic-inorganic hybrid solar cells based on poly (3-hexylthiophene) and TiO2 nanofibers. The performance of the hybrid solar cells was analyzed for four density levels ...
متن کاملHybrid Organic-Inorganic Solar Cells: Recent Developments and Outlook
Solution processed photovoltaic devices are an attractive alternative to costly inorganic semiconductor based conventional photovoltaics. Solution processable organic photovoltaic systems are affected by low carrier mobility, lifetime issues under ambient conditions and limited optical absorption due to the high bandgaps of organic materials. Nanostructured inorganic materials promise to allevi...
متن کاملMesostructured Imidazolate Frameworks
Metal-organic frameworks (MOFs) are crystalline hybrid framework materials composed of inorganic metal “nodes” bridged by rigid organic linkers, thereby featuring exceptionally high surface areas and porosities. Despite the successful synthesis of a plethora of intricate framework topologies, a major objective in current MOF chemistry is the extension of pore sizes from the micropore (> 2 nm) t...
متن کاملCrosslinked Poly(styrene)-block-Poly(2-vinylpyridine) Thin Films as Swellable Templates for Mesostructured Silica and Titania
Traditional approaches to the formation of mesostructured inorganic films from block-copolymer and surfactant templates rely on simultaneous assembly of amphiphilic structure-directing agents and inorganic sol–gel precursor species into ordered hybrid structures. Variations in sample composition and processing conditions have afforded considerable control over the local (nanometer-scale) morpho...
متن کاملToward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close Contact.
Organic-inorganic hybrid solar cells composed of conjugated polymers (CPs) and inorganic nanocrystal (NC) semiconductors have garnered considerable attention as a potential alternative to traditional silicon solar cells due to the capacity of producing high-efficiency solar energy in a cost-effective manner. The combination of advantageous characteristics of CPs and NCs enables the construction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 26 شماره
صفحات -
تاریخ انتشار 2011