Proximity theorems of discrete convex functions

نویسندگان

  • Kazuo Murota
  • Akihisa Tamura
چکیده

Aproximity theorem is astatement that, given an optimization problem and its relaxation, an optimal solution to the original problem exists in acertain neighborhood of asolution to the relaxation. Proximity theorems have been used successfully, for example, in designing efficient algorithms for discrete resource allocation problems. After reviewing the recent results for $\mathrm{L}$-convex and $\mathrm{M}$-convex functions, this paper establishes proximity theorems for larger classes of discrete convex functions, $\mathrm{L}_{2}$-convex functions and $\mathrm{M}_{2}$-convex functions, that are relevant to the polymatroid intersection problem and the submodular flow problem. 1Introduction In the area of discrete optimization, nonlinear optimization problems have been investigated as well as linear optimization problems. Submodular (set) functions and separable convex functions are well-known examples of tractable nonlinear functions, in that the sub-modular function minimization problem can be solved in polynomial time (see [13, 14, 24]), and separable convex functions have been treated successfully in many different discrete optimization problems (see [11]). Recently, certain classes of " discrete convex functions " were proposed:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Discrete L-/M-Convex Function Minimization Based on Continuous Relaxation

We consider the problem of minimizing a nonlinear discrete function with L-/M-convexity proposed in the theory of discrete convex analysis. For this problem, steepest descent algorithms and steepest descent scaling algorithms are known. In this paper, we use continuous relaxation approach which minimizes the continuous variable version first in order to find a good initial solution of a steepes...

متن کامل

Best proximity point theorems in Hadamard spaces using relatively asymptotic center

In this article we survey the existence of best proximity points for a class of non-self mappings which‎ satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [‎A‎. ‎Abkar‎, ‎M‎. ‎Gabeleh‎, Best proximity points of non-self mappings‎, ‎Top‎, ‎21, (2013)‎, ‎287-295]‎ which guarantees the existence of best proximity points for nonex...

متن کامل

New best proximity point results in G-metric space

Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...

متن کامل

M-Convex Function Minimization by Continuous Relaxation Approach: Proximity Theorem and Algorithm

The concept of M-convexity for functions in integer variables, introduced by Murota (1995), plays a primary role in the theory of discrete convex analysis. In this paper, we consider the problem of minimizing an M-convex function, which is a natural generalization of the separable convex resource allocation problem under a submodular constraint and contains some classes of nonseparable convex f...

متن کامل

Some properties and results for certain subclasses of starlike and convex functions

In the present paper, we introduce and investigate some properties of two subclasses $ Lambda_{n}( lambda , beta ) $ and $ Lambda_{n}^{+}( lambda , beta ) $;  meromorphic and starlike  functions of order $ beta $. In particular, several inclusion relations, coefficient estimates, distortion theorems and covering theorems are proven here for each of these function classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2004