Coupling-Constant Dependence of Atomization Energies

نویسندگان

  • MATTHIAS ERNZERHOF
  • JOHN P. PERDEW
  • KIERON BURKE
چکیده

Ž . Ž . ABSTRACT: The local spin-density LSD functional and Perdew]Wang 91 PW91 generalized gradient approximations to atomization energies of molecules are investigated. We discuss the coupling-constant dependence of the atomization energy and why exchange errors of the functionals are greater than exchange]correlation errors. This fact helps to justify hybrid schemes which mix some exact exchange with density functional approximations for exchange and correlation. It is shown that the biggest errors in the atomization energies occur when there is a strong interaction between different electron pairs, which vanishes upon atomization. We argue that the amount of exchange character of a molecular property, such as the atomization energy, depends on the property itself. We define an exact mixing coefficient b, which measures this exchange character, and show that both LSD and PW91 typically overestimate this quantity. Thus, nonempirical hybrid schemes which approximate this quantity by its LSD or PW91 value typically do not improve the exchange]correlation energy. Q 1997 John Wiley & Sons, Inc. Int J Quant Chem 64: 285]295, 1997

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 F eb 2 01 2 Approaching Chemical Accuracy with Quantum Monte Carlo

A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol...

متن کامل

Approaching chemical accuracy with quantum Monte Carlo.

A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol...

متن کامل

How large are nonadiabatic effects in atomic and diatomic systems?

With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. In this work, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion ...

متن کامل

Absorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional

Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PC...

متن کامل

Improved hybrid functional for solids: the HSEsol functional.

We introduce the hybrid functional HSEsol. It is based on PBEsol, a revised Perdew-Burke-Ernzerhof functional, designed to yield accurate equilibrium properties for solids and their surfaces. We present lattice constants, bulk moduli, atomization energies, heats of formation, and band gaps for extended systems, as well as atomization energies for the molecular G2-1 test set. Compared to HSE, si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997