Parity check systems of nonlinear codes over finite commutative Frobenius rings

نویسنده

  • Thomas Westerbäck
چکیده

The concept of parity check matrices of linear binary codes has been extended by Heden [9] to parity check systems of nonlinear binary codes. In the present paper we extend this concept to parity check systems of nonlinear codes over finite commutative Frobenius rings. Using parity check systems, results on how to get some fundamental properties of the codes are given. Moreover, parity check systems and its connection to characters is investigated and a MacWilliams type theorem on the distance distribution is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-dual codes over commutative Frobenius rings

We prove that self-dual codes exist over all finite commutative Frobenius rings, via their decomposition by the Chinese Remainder Theorem into local rings. We construct non-free self-dual codes under some conditions, using self-dual codes over finite fields, and we also construct free self-dual codes by lifting elements from the base finite field. We generalize the building-up construction for ...

متن کامل

A note on the Singleton bounds for codes over finite rings

In this paper, we give a notation on the Singleton bounds for linear codes over a finite commutative quasi-Frobenius ring in the work of Shiromoto [5]. We show that there exists a class of finite commutative quasi-Frobenius rings. The Singleton bounds for linear codes over such rings satisfy d(C) − 1 A ≤ n− log|R| |C|. keywords : Linear codes, General weight, Quasi-Frobenius ring, Singleton bounds

متن کامل

Matrix product codes over finite commutative Frobenius rings

Properties of matrix product codes over finite commutative Frobenius rings are investigated. The minimum distance of matrix product codes constructed with several types of matrices is bounded in different ways. The duals of matrix product codes are also explicitly described in terms of matrix product codes.

متن کامل

MacWilliams Type identities for $m$-spotty Rosenbloom-Tsfasman weight enumerators over finite commutative Frobenius rings

The m-spotty byte error control codes provide a good source for detecting and correcting errors in semiconductor memory systems using high density RAM chips with wide I/O data (e.g. 8, 16, or 32 bits). m-spotty byte error control codes are very suitable for burst correction. M. Özen and V. Siap [7] proved a MacWilliams identity for the m-spotty Rosenbloom-Tsfasman (shortly RT) weight enumerator...

متن کامل

Alternant and BCH codes over certain rings

Alternant codes over arbitrary finite commutative local rings with identity are constructed in terms of parity-check matrices. The derivation is based on the factorization of xs − 1 over the unit group of an appropriate extension of the finite ring. An efficient decoding procedure which makes use of the modified Berlekamp-Massey algorithm to correct errors and erasures is presented. Furthermore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. in Math. of Comm.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017