Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis.
نویسندگان
چکیده
Mitochondrial ammonia synthesis in proximal tubules and its urinary excretion are key components of the renal response to maintain acid-base balance during metabolic acidosis. Since aquaporin-8 (AQP8) facilitates transport of ammonia and is localized in inner mitochondrial membrane (IMM) of renal proximal cells, we hypothesized that AQP8-facilitated mitochondrial ammonia transport in these cells plays a role in the response to acidosis. We evaluated whether mitochondrial AQP8 (mtAQP8) knockdown by RNA interference is able to impair ammonia excretion in the human renal proximal tubule cell line, HK-2. By RT-PCR and immunoblotting, we found that AQP8 is expressed in these cells and is localized in IMM. HK-2 cells were transfected with short-interfering RNA targeting human AQP8. After 48 h, the levels of mtAQP8 protein decreased by 53% (P < 0.05). mtAQP8 knockdown decreased the rate of ammonia released into culture medium in cells grown at pH 7.4 (-31%, P < 0.05) as well as in cells exposed to acid (-90%, P < 0.05). We also evaluated mtAQP8 protein expression in HK-2 cells exposed to acidic medium. After 48 h, upregulation of mtAQP8 (+74%, P < 0.05) was observed, together with higher ammonia excretion rate (+73%, P < 0.05). In vivo studies in NH(4)Cl-loaded rats showed that mtAQP8 protein expression was also upregulated after 7 days of acidosis in renal cortex (+51%, P < 0.05). These data suggest that mtAQP8 plays an important role in the adaptive response of proximal tubule to acidosis possibly facilitating mitochondrial ammonia transport.
منابع مشابه
Response of the mitochondrial proteome of rat renal proximal convoluted tubules to chronic metabolic acidosis.
Metabolic acidosis is a common clinical condition that is caused by a decrease in blood pH and bicarbonate concentration. Increased extraction and mitochondrial catabolism of plasma glutamine within the renal proximal convoluted tubule generates ammonium and bicarbonate ions that facilitate the excretion of acid and partially restore acid-base balance. Previous studies identified only a few mit...
متن کاملProteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis.
Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are add...
متن کاملProximal tubule water transport-lessons from aquaporin knockout mice.
THE PROXIMAL TUBULE REABSORBS essentially all the filtered organic solutes, most of the filtered phosphate, 80% of the filtered bicarbonate, and 60% of the filtered sodium chloride. Approximately 70% of the filtered water is also reabsorbed by this segment. Despite these very high rates of proximal tubule solute transport, the osmolality of the luminal fluid decreases by only 5 mosmol/kgH2O fro...
متن کاملExpression of rat renal Na/H antiporter mRNA levels in response to respiratory and metabolic acidosis.
The mammalian proximal tubule is an important mediator of the renal adaptive response to systemic acidosis. In chronic metabolic and respiratory acidosis the bicarbonate reabsorptive (or proton secretory) capacity is increased. This increase is mediated, at least in part, by an increase in Vmax of the luminal Na/H antiporter. To determine whether this adaptation involves increased mRNA expressi...
متن کاملAcid-base transport by the renal proximal tubule.
One of the major tasks of the renal proximal tubule is to secrete acid into the tubule lumen, thereby reabsorbing approximately 80% of the filtered HCO3- as well as generating new HCO3- for regulating blood pH. This review summarizes the cellular and molecular events that underlie four major processes in HCO3- reabsorption. The first is CO2 entry across the apical membrane, which in large part ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 303 3 شماره
صفحات -
تاریخ انتشار 2012