Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure : role of nitric oxide, prostanoids, oxidant stress, and bradykinin.
نویسندگان
چکیده
BACKGROUND-Chronic heart failure (CHF) impairs the endothelium-dependent, flow-mediated dilation (FMD) of small arteries. However, whether chronic angiotensin-converting enzyme (ACE) inhibition affects the impairment of FMD in CHF is unknown. We investigated the effects of long-term ACE inhibition on the FMD of peripheral arteries in rats with CHF and the mechanism(s) involved. METHODS AND RESULTS-FMD was assessed in isolated, perfused gracilis muscle arteries from sham-operated, and untreated or ACE inhibitor-treated (perindopril 2 mg. kg(-1). day(-1) for 10 weeks) rats with CHF (coronary artery ligation). The role of nitric oxide (NO), prostaglandins, and free radicals was assessed by pretreating the vessels with the NO synthase inhibitor N(W)-nitro-L-arginine, the cyclooxygenase inhibitor diclofenac, or the free radical scavenger N-2-mercaptopropionyl-glycine (MPG). Endothelial NO synthase mRNA expression was determined by reverse transcriptase polymerase chain reaction. In animals with hemodynamic and echographic signs of CHF, FMD was converted into vasoconstriction, and this was prevented by ACE inhibition. FMD of arteries from sham-operated or ACE inhibitor-treated CHF rats was abolished by N(W)-nitro-L-arginine. In untreated CHF rats, FMD was increased by diclofenac and MPG. In contrast, in arteries from ACE inhibitor-treated rats, neither diclofenac nor MPG affected FMD. In parallel, ACE inhibition prevented the reduction of endothelial NO synthase mRNA by CHF. CONCLUSIONS-In CHF, ACE inhibition normalized NO-dependent dilatation and suppressed the production of vasoconstrictor prostanoid(s), resulting in improved FMD. The improvement of FMD might contribute to the beneficial effects of ACE inhibition during CHF.
منابع مشابه
Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin.
We studied whether inhibition of angiotensin converting enzyme stimulates the formation of nitric oxide and prostacyclin in cultured human and bovine endothelial cells by an enhanced accumulation of endothelium-derived bradykinin. Nitric oxide formation was assessed in terms of intracellular cyclic GMP accumulation, prostacyclin release by a specific radioimmunoassay. Inhibition of angiotensin ...
متن کاملImprovement of endothelial dysfunction in experimental heart failure by chronic RAAS-blockade: ACE-inhibition or AT1-receptor blockade?
Chronic heart failure (CHF) is associated with endothelial dysfunction. Activation of the renin-angiotensin-aldosterone system (RAAS) is believed to be important in the deterioration of endothelial dysfunction in CHF through stimulation of oxidative stress. Whereas angiotensin-converting enzyme inhibitors (ACE-I) improve endothelial function in CHF, the effects of angiotensin II AT1-receptor bl...
متن کاملAre the endothelial mechanisms of ACE-Is
The endothelial mechanism of ACE-Is action is multifaceted. On the one hand, by inhibiting ACE, ACE-Is diminish Ang II synthesis, one of the best known active peptides. On the other hand, they modify synthesis and release of PGI and NO via increasing production of other biologically important peptides like bradykinin, Ang-(1-7) or Ang-(1-9). Thus, ACE-Is play a crucial role in the function of e...
متن کاملUsing ACE Inhibitors Appropriately -- American Family Physician
www.aafp.org/afp AMERICAN FAMILY PHYSICIAN 461 Renin-Angiotensin System The renin-angiotensin system is systemically and locally driven. The systemic process is triggered by the kidney’s response to decreased effective blood volume and begins with the secretion of renin from the renal cortex. Once released, renin cleaves angiotensinogen to form angiotensin I. This product, in turn, is catalyzed...
متن کاملRapid Communication Ramiprilat Enhances Endothelial Autacoid Formation by Inhibiting Breakdown of Endothelium-Derived Bradykinin
We studied whether inhibition of angiotensin converting enzyme stimulates the formation of nitric oxide and prostacyclin in cultured human and bovine endothelial cells by an enhanced accumulation of endothelium-derived bradykinin. Nitric oxide formation was assessed in terms of intracellular cyclic GMP accumulation, prostacyclin release by a specific radioimmunoassay. Inhibition of angiotensin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 102 3 شماره
صفحات -
تاریخ انتشار 2000