A Sparse Manifold Classification Method Based on a Multi-Dimensional Descriptive Primitive of Polarimetric SAR Image Time Series
نویسندگان
چکیده
Classification using the rich information provided by time-series and polarimetric Synthetic Aperture Radar (SAR) images has attracted much attention. The key point is to effectively reveal the correlation between different dimensions of information and form a joint feature. In this paper, a multi-dimensional SAR descriptive primitive for each single pixel is firstly constructed, which in the polarimetric scale obtains incoherent information through target decompositions while in the time scale obtains coherent information through stochastic walk. Secondly, for the purpose of feature extraction and dimension reduction, a special feature space mapping for the descriptive primitive of the whole image is proposed based on sparse manifold expression and compressed sensing. Finally, the above feature is inputted into a support vector machine (SVM) classifier. This proposed method can inherently integrate the features of polarimetric SAR times series. Experiment results on three real time-series polarimetric SAR data sets show the effectiveness of our presented approach. The idea of a multi-dimensional descriptive primitive as a convenient tool also opens a new spectrum of potential for further processing of polarimetric SAR image time series.
منابع مشابه
Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation
Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannia...
متن کاملMicrowave Imaging Using SAR
Polarimetric Synthetic Aperture Radar (Pol.-SAR) allows us to implement the recognition and classification of radar targets. This article investigates the arrangement of scatterers by SAR data and proposes a new Look-up Table of Region (LTR). This look-up table is based on the combination of (entropy H/Anisotropy A) and (Anisotropy A/scattering mechanism α), which has not been reported up now. ...
متن کاملChange Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images
The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017