Macneille Completions of Modal Algebras
نویسندگان
چکیده
For a modal algebra (B, f), there are two natural ways to extend f to an operation on the MacNeille completion of B. The resulting structures are called the lower and upper MacNeille completions of (B, f). In this paper we consider lower and upper MacNeille completions for various varieties of modal algebras. In particular, we characterize the varieties of closure algebras and diagonalizable algebras that are closed under lower and upper MacNeille completions. We also introduce the variety of Sierpinski algebras, and show that although this variety is not closed under lower or upper MacNeille completions, it follows from the axiom of choice that each Sierpinski algebra has a MacNeille completion that is also a Sierpinski algebra, and that this result implies the Boolean ultrafilter theorem.
منابع مشابه
MacNeille completions of lattice expansions
There are two natural ways to extend an arbitrary map between (the carriers of) two lattices, to a map between their MacNeille completions. In this paper we investigate which properties of lattice maps are preserved under these constructions, and for which kind of maps the two extensions coincide. Our perspective involves a number of topologies on lattice completions, including the Scott topolo...
متن کاملMacneille Completions of Heyting Algebras
In this note we provide a topological description of the MacNeille completion of a Heyting algebra similar to the description of the MacNeille completion of a Boolean algebra in terms of regular open sets of its Stone space. We also show that the only varieties of Heyting algebras that are closed under MacNeille completions are the trivial variety, the variety of all Boolean algebras, and the v...
متن کاملComparison of MacNeille, Canonical, and Profinite Completions
Using duality theory, we give necessary and sufficient conditions for the MacNeille, canonical, and profinite completions of distributive lattices, Heyting algebras, and Boolean algebras to be isomorphic.
متن کاملMacNeille Completions of FL-algebras
We show that a large number of equations are preserved by DedekindMacNeille completions when applied to subdirectly irreducible FL-algebras/residuated lattices. These equations are identified in a systematic way, based on proof-theoretic ideas and techniques in substructural logics. It follows that a large class of varieties of Heyting algebras and FL-algebras admits completions.
متن کاملCompletions of µ-algebras
A μ-algebra is a model of a first order theory that is an extension of the theory of bounded lattices, that comes with pairs of terms (f, μx.f) where μx.f is axiomatized as the least prefixed point of f , whose axioms are equations or equational implications. Standard μ-algebras are complete meaning that their lattice reduct is a complete lattice. We prove that any non trivial quasivariety of μ...
متن کامل