Characterization of the functional properties of smooth muscle caldesmon domain 4a: evidence for an independent inhibitory actin-tropomyosin binding domain.

نویسندگان

  • M El-Mezgueldi
  • O Copeland
  • I D Fraser
  • S B Marston
  • P A Huber
چکیده

Recent analysis has shown the presence of three sequences in the C-terminal 170 amino acids of human caldesmon (domain 4) which are involved in actin binding and tropomyosin-dependent inhibition of actomyosin ATPase. Two are in domain 4b (amino acids 715-793) and one is in domain 4a (amino acids 636-714). In the present work we have compared recombinant peptides containing either domain 4a or domain 4b to address the question as to whether domain 4a alone has any inhibitory activity. We have produced three new recombinant fragments containing domain 4a: H10 [622-708], H12 [506-708] and H13 [622-726] and we have characterized their functional properties. All three fragments bound to actin and tropomyosin. Caldesmon, but not domain 4b, was able to displace the fragments H10, H12 and H13 from actin. Thus the isolated caldesmon domain 4a peptides bind to the same region on actin as in the whole molecule while domains 4a and 4b occupy different sites on the actin molecule. Unlike domain 4b, none of the domain 4a fragments inhibited the actomyosin ATPase in the absence of tropomyosin. However both domain 4a and 4b fragments displayed an inhibitory activity in the presence of tropomyosin. H13 and H12 were more potent inhibitors than H10. Ca2+-calmodulin bound to H13 and reversed the inhibitory activity of this fragment but did not bind to H10 and H12. We conclude that domain 4a can act as an independent inhibitory actin-tropomyosin binding domain, but its properties are very different from the extreme C-terminal domain 4b.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of caldesmon on the position and myosin-induced movement of smooth muscle tropomyosin bound to actin.

It is known that the actin-binding protein caldesmon inhibits actomyosin ATPase activity and might in this way take part in the thin filament regulation of smooth muscle contraction. Although the molecular mechanism of this inhibition is unknown, it is clear that the presence of actin-bound tropomyosin is necessary for full inhibition. Recent evidence also suggests that the myosin-induced movem...

متن کامل

Amino acid mutations in the caldesmon COOH-terminal functional domain increase force generation in bladder smooth muscle.

Caldesmon (CaD), a component of smooth muscle thin filaments, binds actin, tropomyosin, calmodulin, and myosin and inhibits actin-activated ATP hydrolysis by smooth muscle myosin. Internal deletions of the chicken CaD functional domain that spans from amino acids (aa) 718 to 731, which corresponds to aa 512-530 including the adjacent aa sequence in mouse CaD, lead to diminished CaD-induced inhi...

متن کامل

The essential role of tropomyosin in cooperative regulation of smooth muscle thin filament activity by caldesmon.

We compared the mechanisms by which caldesmon inhibits actin and actin-tropomyosin activation of myosin subfragment 1 (S1) MgATPase activity. Caldesmon always inhibited actin activation by displacing S1.ADP.Pi from actin and inhibition required at least 0.7 caldesmon molecules bond per actin for 90% inhibition. Caldesmon inhibited actin-tropomyosin without any displacement of S1.ADP.Pi; thus it...

متن کامل

8030 Vascular Smooth Muscle

Caldesmon, a major actinand calmodulin-binding protein, has been identified in diverse bovine tissues, including smooth and striated muscles and various nonmuscle tissues, by denaturing polyacrylamide gel electrophoresis of tissue homogenates and immunoblotting using rabbit anti-chicken gizzard caldesmon. Caldesmon was purified from vascular smooth muscle (bovine aorta) by heat treatment of a t...

متن کامل

A comparison of the effects of calponin on smooth and skeletal muscle actomyosin systems in the presence and absence of caldesmon.

Thiosphosphorylated smooth muscle myosin and skeletal muscle myosin, both of which express Ca(2+)-independent actin-activated MgATPase activity, were used to examine the functional effects of calponin and caldesmon separately and together. Separately, calponin and caldesmon inhibited the actin-activated MgATPase activities of thiophosphorylated smooth muscle myosin and skeletal muscle myosin, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 332 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1998