Connections between a Conjecture of Schiffer’s and Incompressible Fluid Mechanics
نویسنده
چکیده
We demonstrate connections that exists between a conjecture of Schiffer’s (which is equivalent to a positive answer to the Pompeiu problem), stationary solutions to the Euler equations, and the convergence of solutions to the Navier-Stokes equations to that of the Euler equations in the limit as viscosity vanishes. We say that a domain Ω ⊆ R, d ≥ 2, has the Pompeiu property if, given that the integral of a continuous function f : R → R is zero for all translations and rotations of Ω, it follows that f is identically zero. The Pompeiu problem is to determine whether balls are the only simply connected domains with Lipschitz boundary not having the Pompeiu property. From now on we assume that Ω is a nonempty simply connected domain with Lipschitz boundary Γ, having outward unit normal n (defined almost everywhere on Γ). Williams showed in [5] that an affirmative answer to the Pompeiu problem is equivalent to Conjecture 1 of Schiffer. Conjecture 1 (Schiffer’s conjecture). Let α and λ be nonzero real numbers. Then there exists a non-identically vanishing solution ω to the overdetermined equation
منابع مشابه
Axi-Symmetric Deformation Due to Various Sources in Saturated Porous Media with Incompressible Fluid
The general solution of equations of saturated porous media with incompressible fluid for two dimensional axi-symmetric problem is obtained in the transformed domain. The Laplace and Hankel transforms have been used to investigate the problem. As an application of the approach concentrated source and source over circular region have been taken to show the utility of the approach. The transforme...
متن کاملReflection and Transmission of Longitudinal Wave at Micropolar Viscoelastic Solid/Fluid Saturated Incompressible Porous Solid Interface
In this paper, the reflection and refraction of longitudinal wave from a plane surface separating a micropolar viscoelastic solid half space and a fluid saturated incompressible half space is studied. A longitudinal wave (P-wave) impinges obliquely at the interface. Amplitude ratios for various reflected and transmitted waves have been obtained. Then these amplitude ratios have been computed nu...
متن کاملFlow and Heat Transfer Analysis of the Sodium Alginate Conveying Copper Nanoparticles between Two Parallel Plates
In this study, the steady incompressible flow of a non-Newtonian sodium alginate (SA) fluid conveying copper nanoparticles (Cu) which flow within two vertical parallel plates is investigated by using the homotopy perturbation analytical scheme to solve the coupled nonlinear ordinary equations arising from the mechanics of the fluid. The developed analytical solutions are used to investigate the...
متن کاملLectures on the Onsager Conjecture
These lectures give an account of recent results pertaining to the celebrated Onsager conjecture. The conjecture states that the minimal space regularity needed for a weak solution of the Euler equation to conserve energy is 1/3. Our presentation is based on the Littlewood-Paley method. We start with quasi-local estimates on the energy flux, introduce Onsager criticality, find a positive soluti...
متن کاملConcerning the Effect of a Viscoelastic Foundation on the Dynamic Stability of a Pipeline System Conveying an Incompressible Fluid
In this paper, we present an analytical method for solving a well-posed boundary value problem of mathematical physics governing the vibration characteristics of an internal flow propelled fluid-structure interaction where the pipeline segment is idealized as an elastic hollow beam conveying an incompressible fluid on a viscoelastic foundation. The effect of Coriolis and damping forces on the o...
متن کامل