RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice

نویسندگان

  • Lakshmi P. Manavalan
  • Xi Chen
  • Joseph Clarke
  • John Salmeron
  • Henry T. Nguyen
چکیده

About one-third of the world's rice area is in rain-fed lowlands and most are prone to water shortage. The identification of genes imparting tolerance to drought in the model cereal plant, rice, is an attractive strategy to engineer improved drought tolerance not only rice but other cereals as well. It is demonstrated that RNAi-mediated disruption of a rice farnesyltransferase/squalene synthase (SQS) by maize squalene synthase improves drought tolerance at both the vegetative and reproductive stages. Twenty-day-old seedlings of wild type (Nipponbare) and seven independent events of transgenic RNAi lines showed no difference in morphology. When subjected to water stress for a period of 32 d under growth chamber conditions, transgenic positives showed delayed wilting, conserved more soil water, and improved recovery. When five independent events along with wild-type plants were subjected to drought at the reproductive stage under greenhouse conditions, the transgenic plants lost water more slowly compared with the wild type, through reduced stomatal conductance and the retention of high leaf relative water content (RWC). After 28 d of slow progressive soil drying, transgenic plants recovered better and flowered earlier than wild-type plants. The yield of water-stressed transgenic positive plants ranged from 14-39% higher than wild-type plants. When grown in plates with Yoshida's nutrient solution with 1.2% agar, transgenic positives from three independent events showed increased root length and an enhanced number of lateral roots. The RNAi-mediated inactivation produced reduced stomatal conductance and subsequent drought tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field

Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sa...

متن کامل

Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice

Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...

متن کامل

Correction: Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes

Drought is one of the major limiting factors for productivity of crops including rice (Oryza sativa L.). Understanding the role of allelic variations of key regulatory genes involved in stress-tolerance is essential for developing an effective strategy to combat drought. The bZIP transcription factors play a crucial role in abiotic-stress adaptation in plants via abscisic acid (ABA) signaling p...

متن کامل

Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions.

Rice (Oryza sativa) is the primary food source for more than one-half of the world's population. Because rice cultivation is dependent on water availability, drought during flowering severely affects grain yield. Here, we show that the function of a drought-inducible receptor-like cytoplasmic kinase, named GROWTH UNDER DROUGHT KINASE (GUDK), is required for grain yield under drought and well-wa...

متن کامل

Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions.

Drought poses a serious threat to the sustainability of rice (Oryza sativa) yields in rain-fed agriculture. Here, we report the results of a functional genomics approach that identified a rice NAC (an acronym for NAM [No Apical Meristem], ATAF1-2, and CUC2 [Cup-Shaped Cotyledon]) domain gene, OsNAC10, which improved performance of transgenic rice plants under field drought conditions. Of the 14...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2012