Chronic nickel bioaccumulation and sub-cellular fractionation in two freshwater teleosts, the round goby and the rainbow trout, exposed simultaneously to waterborne and dietborne nickel.

نویسندگان

  • Erin M Leonard
  • Upasana Banerjee
  • Joshua J D'Silva
  • Chris M Wood
چکیده

Rainbow trout and round goby were exposed for 30 days to waterborne and dietary Ni in combination at two waterborne concentration ranges (6.2-12 μmol/L, 68-86 μmol/L), the lower of which is typical of contaminated environments. The prey (black worms; Lumbriculus variegatus) were exposed for 48 h in the effluent of the fish exposure tanks before being fed to the fish (ration=2% body weight/day). Ni in gills, gut, and prey was fractionated into biologically inactive metal [BIM=metal-rich granules (MRG) and metallothionein-like proteins (MT)] and biologically active metal [BAM=organelles (ORG) and heat-denaturable proteins (HDP)]. Gobies were more sensitive than trout to chronic Ni exposure. Possibly, this greater sensitivity may have been due to the goby's pre-exposure to pollutants at their collection site, as evidenced by ∼2-fold greater initial Ni concentrations in both gills and gut relative to trout. However, this was followed by ∼2-16× larger bioaccumulation in both the gills and the gut during the experimental exposure. On a subcellular level, ∼3-40× more Ni was associated with the BAM fraction of goby in comparison to trout. Comparison of the fractional distribution of Ni in the prey versus the gut tissue of the predators suggested that round goby were more efficient than rainbow trout in detoxifying Ni taken up from the diet. Assessing sub-cellular distribution of Ni in the gills and gut of two fish of different habitat and lifestyles revealed two different strategies of Ni bioaccumulation and sub-cellular distribution. On the one hand, trout exhibited an ability to regulate gill Ni bioaccumulation and maintain the majority of the Ni in the MT fraction of the BIM. In contrast goby exhibited large Ni spillovers to both the HDP and ORG fractions of the BAM in the gill. However, the same trend was not observed in the gut, where the potential acclimation of goby to pollutants from their collection site may have aided their ability to regulate Ni spillover to the BAM more so than in trout. Overall, chronic mortality observed in goby may be associated more with Ni bioaccumulation in gills than in gut; the former at either 4-d or 30-d was predictive of chronic Ni toxicity. BIM and BAM fractions of the goby gills were equally predictive of chronic (30-d) mortality. However, critical body residue (CBR50) values of the BIM fraction were ∼2-4× greater than CBR50 values of the BAM fraction, suggesting that goby are more sensitive to Ni bioaccumulation in the BAM fraction. There was insufficient mortality in trout to assess whether Ni bioaccumulation was predictive of chronic mortality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of waterborne and dietborne Pb in rainbow trout, Oncorhynchus mykiss: Bioaccumulation, physiological responses, and chronic toxicity.

In Pb-contaminated environments, simultaneous exposure to both waterborne and dietborne Pb is likely to occur. This study examined the potential interactive effects of these two pathways in juvenile rainbow trout that were exposed to Pb in the water alone, in the diet alone, and in combination for 7 weeks. The highest waterborne Pb concentration tested (110μgL(-1)) was approximately equivalent ...

متن کامل

Critical body residues, Michaelis-Menten analysis of bioaccumulation, lethality and behaviour as endpoints of waterborne Ni toxicity in two teleosts.

Traditionally, water quality guidelines/criteria are based on lethality tests where results are expressed as a function of waterborne concentrations (e.g. LC50). However, there is growing interest in the use of uptake and binding relationships, such as biotic ligand models (BLM), and in bioaccumulation parameters, such as critical body residue values (e.g. CBR50), to predict metal toxicity in a...

متن کامل

Chronic, sublethal nickel acclimation alters the diffusive properties of renal brush border membrane vesicles (BBMVs) prepared from the freshwater rainbow trout.

Brush border membrane vesicles (BBMVs) were prepared from the kidneys of rainbow trout exposed acutely (72 h; 13,380 microg Ni L(-1)), chronically (11 months; 289 microg Ni L(-1)), or chronically and acutely, to waterborne nickel (Ni). Uptake of 63Ni into renal BBMVs was temperature-dependent and fitted a two component kinetic model composed of a saturable, Michaelis-Menten component prominent ...

متن کامل

Pre-exposure to waterborne nickel downregulates gastrointestinal nickel uptake in rainbow trout: indirect evidence for nickel essentiality.

Nickel (Ni) may be both a toxicant and a micronutrient, but its essentiality to aquatic animals is not established. Interactions between branchial and gastrointestinal routes of metal uptake are important for understanding metal regulation and essentiality in aquatic animals. Adult rainbowtrout (Oncorhynchus mykiss) were pre-exposed to a sublethal concentration of waterborne Ni (7.43 micromol L...

متن کامل

Predicting dietborne metal toxicity from metal influxes.

Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Aquatic toxicology

دوره 154  شماره 

صفحات  -

تاریخ انتشار 2014