Cohomology in Grothendieck Topologies and Lower Bounds in Boolean Complexity

نویسنده

  • Joel Friedman
چکیده

This paper is motivated by questions such as P vs. NP and other questions in Boolean complexity theory. We describe an approach to attacking such questions with cohomology, and we show that using Grothendieck topologies and other ideas from the Grothendieck school gives new hope for such an attack. We focus on circuit depth complexity, and consider only finite topological spaces or Grothendieck topologies based on finite categories; as such, we do not use algebraic geometry or manifolds. Given two sheaves on a Grothendieck topology, their cohomological complexity is the sum of the dimensions of their Ext groups. We seek to model the depth complexity of Boolean functions by the cohomological complexity of sheaves on a Grothendieck topology. We propose that the logical AND of two Boolean functions will have its corresponding cohomological complexity bounded in terms of those of the two functions using “virtual zero extensions.” We propose that the logical negation of a function will have its corresponding cohomological complexity equal to that of the original function using duality theory. We explain these approaches and show that they are stable under pullbacks and base change. It is the subject of ongoing work to achieve AND and negation bounds simultaneously in a way that yields an interesting depth lower bound. ∗Departments of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Departments of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA. [email protected], http://www.math.ubc.ca/~jf. Research supported in part by an NSERC grant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology in Grothendieck Topologies and Lower Bounds in Boolean Complexity II: A Simple Example

In a previous paper we have suggested a number of ideas to attack circuit size complexity with cohomology. As a simple example, we take circuits that can only compute the AND of two inputs, which essentially reduces to SET COVER. We show a very special case of the cohomological approach (one particular free category, using injective and superskyscraper sheaves) gives the linear programming boun...

متن کامل

Grothendieck Topologies and Ideal Closure Operations

We relate closure operations for ideals and for submodules to non-flat Grothendieck topologies. We show how a Grothendieck topology on an affine scheme induces a closure operation in a natural way, and how to construct for a given closure operation fulfilling certain properties a Grothendieck topology which induces this operation. In this way we relate the radical to the surjective topology and...

متن کامل

CHAPTER 13 The Rising Sea : Grothendieck on Simplicity and Generality Colin

In 1949, Andre Weil published striking conjectures linking number theory to topology and a striking strategy for a proof [Weil, 1949]. Around 1953, Jean-Pierre Serre took on the project and soon recruited Alexander Grothendieck. Serre created aseries of concise elegant tools which Grothendieck and coworkers simplified into thousands of pages of category theory. Some have complained of this styl...

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Robot Motion Planning, Weights of Cohomology Classes, and Cohomology Operations

The complexity of algorithms solving the motion planning problem is measured by a homotopy invariant TC(X) of the configuration space X of the system. Previously known lower bounds for TC(X) use the structure of the cohomology algebra of X. In this paper we show how cohomology operations can be used to sharpen these lower bounds for TC(X). As an application of this technique we calculate explic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0512008  شماره 

صفحات  -

تاریخ انتشار 2005