In situ IR spectroscopic and thermogravimetric study of the dehydration of gypsum

نویسنده

  • A. PUTNIS
چکیده

The dehydration of gypsum CaSO4.2H20 has been studied, at negligible water vapour pressure, by in situ infrared (IR) spectroscopy and by thermogravimetry to determine whether intermediate phases (CaSO4.nH20) exist, other than the hemihydrate with n=0.5, and also to compare the mechanism of the dehydration process when measured by two techniques with very different correlation lengths. Thermogravimetry shows an apparently continuous water loss with an activation energy of 90.3 kJ.mol -~, with no changes in the activation energy as a function of the degree of dehydration. IR spectroscopy on the other hand, clearly shows the existence of three discrete phases, gypsum CaSO4.2H20, hemihydrate CaSO4.0.5H20 and y-CaSO4, with nucleation of each successive phase as dehydration proceeds. There is no evidence to suggest the presence of phases with any intermediate water content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Situ Raman Spectroscopic Study of Gypsum (CaSO4·2H2O) and Epsomite (MgSO4·7H2O) Dehydration Utilizing an Ultrasonic Levitator.

We present an original apparatus combining an acoustic levitator and a pressure-compatible process chamber. To characterize in situ the chemical and physical modifications of a levitated, single particle while heated to well-defined temperatures using a carbon dioxide laser, the chamber is interfaced to a Raman spectroscopic probe. As a proof-of-concept study, by gradually increasing the heatin...

متن کامل

Non-Isothermal Dehydration Kinetics of Diphasic Mullite Precursor Gel

Aluminosilicate gel precursor having mullite composition was synthesized from inorganic salts of aluminum and silicon by employing the sol-gel method. Chemical analysis, surface area and bulk density measurements were performed to characterize the dried gel. The course of the mullitization was examined by FT-IR analysis which confirmed the diphasic nature of the gel. ...

متن کامل

Synthesis of Polythiophene/Manganese Dioxide Nanocomposites by In-situ Core-shell Polymerization Method and Study of their Physical Properties

The present research work describes an efficient method for facile synthesis of α-MnO2 nanorods by hydrothermal method and preparation of a series of polythiophene/manganese dioxide (PTh/MnO2) nanocomposites with various α-MnO2 ratios. These nanocomposites were fabricated by in-situ oxidative polymerization method using FeCl3 as oxidant, and characterized by Fourier transformed infrared (FT-IR)...

متن کامل

In Situ Chemical Oxidative Graft Polymerization of Aniline from Fe3O4 Nanoparticles

This study aims at exploring an effective route in the in situ graft polymerization of aniline from Fe3O4 nanoparticles. To this goal, Fe3O4 magnetic nanoparticles were prepared by coprecipitation method using ammonia solution as the precipitating agent, and were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM)....

متن کامل

One-dimensional Uranium(VI) Coordination Polymer Complex Containing Dimethyl and Trimethyl Phosphate Ligands: Synthesis, Spectroscopic Characterization, Thermal Analyses, and Crystal Structure

A new one-dimensional uranium(VI) coordination polymer, [UO2(μ-DMP)2(TMP)]n (1) (DMP is dimethyl phosphate and TMP is trimethyl phosphate), was prepared from the reaction of UO2(NO3)2.6H2O and TMP in in THF (THF is tetrahydrofuran) as a solvent. Suitable crystals of this complex for crystal structure determination were obtained by slow evaporation of the produced yellow solution at room tempera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006