A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons.

نویسندگان

  • Alexander O Komendantov
  • Olena G Komendantova
  • Steven W Johnson
  • Carmen C Canavier
چکیده

Midbrain dopaminergic (DA) neurons in vivo exhibit two major firing patterns: single-spike firing and burst firing. The firing pattern expressed is dependent on both the intrinsic properties of the neurons and their excitatory and inhibitory synaptic inputs. Experimental data suggest that the activation of N-methyl-D-aspartate (NMDA) and GABAA receptors is a crucial contributor to the initiation and suppression of burst firing, respectively, and that blocking Ca(2+)-activated potassium SK channels can facilitate burst firing. A multi-compartmental model of a DA neuron with a branching structure was developed and calibrated based on in vitro experimental data to explore the effects of different levels of activation of NMDA and GABAA receptors as well as the modulation of the SK current on the firing activity. The simulated tonic activation of GABAA receptors was calibrated by taking into account the difference in the electrotonic properties in vivo versus in vitro. Although NMDA-evoked currents are required for burst generation in the model, currents evoked by GABAA-receptor activation can also regulate the firing pattern. For example, the model predicts that increasing the level of NMDA receptor activation can produce excessive depolarization that prevents burst firing, but a concurrent increase in the activation of GABAA receptors can restore burst firing. Another prediction of the model is that blocking the SK channel current in vivo will facilitate bursting, but not as robustly as blocking the GABAA receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modeling Study Suggests Complementary Roles for GABAA and NMDA Receptors and the SK channel in Regulating the Firing Pattern

Midbrain dopaminergic (DA) neurons in vivo exhibit two major firing patterns: singlespike firing and burst firing. The firing pattern expressed is dependent upon both the intrinsic properties of the neurons and their excitatory and inhibitory synaptic inputs. Experimental data suggest that the activation of NMDA and GABAA receptors is a crucial contributor to the initiation and suppression of b...

متن کامل

A Dynamic Role for GABA Receptors on the Firing Pattern of Midbrain

22 Dopaminergic neurons are subject to a significant background GABAergic input 23 in vivo. The presence of this GABAergic background might be expected to inhibit 24 dopaminergic neuron firing. However, dopaminergic neurons are not all silent but instead 25 fire in single-spiking and burst firing modes. Here we present evidence that phasic 26 changes in the tonic activity of GABAergic afferents...

متن کامل

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

Disruption of Dopamine Neuron Activity Pattern Regulation through Selective Expression of a Human KCNN3 Mutation

The calcium-activated small conductance potassium channel SK3 plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing couplin...

متن کامل

GABAA receptor stimulation blocks NMDA-induced bursting of dopaminergic neurons in vitro by decreasing input resistance.

The effects of the GABAA agonist, isoguvacine, on NMDA-induced burst firing of substantia nigra dopaminergic neurons were studied with intracellular and whole cell recordings in vitro. NMDA application caused the neurons to fire in rhythmic bursts. Although the NMDA-induced bursty firing pattern was insensitive to hyperpolarization by current injection, it was reversibly abolished by the select...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 91 1  شماره 

صفحات  -

تاریخ انتشار 2004